References
- Akin, S. and Karpuz, C. (2008), "Estimating drilling parameters for diamond bit drilling operations using articial neural networks", Int. J. Geomech., 8(1), 68-73. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:1(68)
- Andres, J.D., Lorca, P., Juez, F.J.D.C. and Lasheras, F.S. (2011), "Bankruptcy forecasting: a hybrid approach using fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS)", Expert Syst. Appl., 38,1866-1875. https://doi.org/10.1016/j.eswa.2010.07.117
- Attoh-Okine, N.O., Cooger, K. and Mensah, S. (2009), "Multivariate adaptive regression (MARS) and hinged hyperplanes (HHP) for doweled pavement performance modeling", Constr. Build. Mater., 23(9), 3020-3023. https://doi.org/10.1016/j.conbuildmat.2009.04.010
- Burland, J.B. (1973), "Shaft friction of piles in clay-a simple fundamental approach", Ground Eng., 6(3), 30-42.
- Chandler, R.J. (1968), "The shaft friction of piles in cohesive soil in terms of effective stress", Civil Eng. Public Works Rev., 63, 48-51.
- Crino, S. and Brown, D.E. (2007), "Global optimization with multivariate adaptive regression splines", IEEE T. Syst. Man Cy. B, 37(2), 333-340. https://doi.org/10.1109/TSMCB.2006.883430
- Deconinck, E., Coomans, D. and Heyden, V.Y. (2007), "Exploration of linear modelling techniques and their combination with multivariate adaptive regression splines to predict gastro-intestinal absorption of drugs", J. Pharmaceut. Biomed., 43,119-130. https://doi.org/10.1016/j.jpba.2006.06.022
- Ekman, T. and Kubin, G. (1999), "Nonlinear prediction of mobile radio channels: measurements and mars model designs", IEEE International Conference on Acoustics, Speech, and Signal Processing, 5, 2667-2670.
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann Stat., 19, 1-141. https://doi.org/10.1214/aos/1176347963
- Friedman, J.H. and Roosen, C.B. (1995), "An introduction to multivariate adaptive regression splines", Stat. Methods Med. Res., 4, 197-217. https://doi.org/10.1177/096228029500400303
- Goh, A.T.C. (1995), "Empirical design in geotechnics using neural networks", Geotechnique, 45(4), 709-714. https://doi.org/10.1680/geot.1995.45.4.709
- Hastie, T., Tibshirani, R. and Friedman, J.H. (2003), The elements of statistical learning, Springer-Verlag, New York.
- Kecman, V. (2001), Leaming and soft computing: support vector machines, neural networks, and fuzzy logic models, The MIT press, Cambridge, Massachusetts, London, England.
- Lewis, P.A.W. and Stevens, J.G. (1991), "Nonlinear modeling of time series using multivariate adaptive regression splines (mars)", J. Am. Stat. Assoc., 86(416), 864-877. https://doi.org/10.1080/01621459.1991.10475126
- Mayoraz, F. and Vulliet, L. (2002), "Neural networks for slope movement prediction", Int. J. Geomech., 2, 153-173. https://doi.org/10.1061/(ASCE)1532-3641(2002)2:2(153)
- McClelland, B. (1972), "Design and performance of deep foundations in clay", General Report. Am. Sot. Civ. Engrs Specialty Conf Performance of Earth and Earth-supported Structures, 2, 111-114.
- Meyerhof, G.G. (1976), "Bearing capacity and settlement of pile foundations", J. Geotech. Eng. Div. -ASCE, 102(GT3), 195-228.
- Miranda, T., Correia, A.G., Santos, M., Sousa, L.R. and Cortez, P. (2011), "New models for strength and deformability parameter calculation in rock masses using data-mining techniques", Int. J. Geomech., 11(1), 44-58. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000071
- Park, D. and Rilett, L.R. (1999), "Forecasting freeway link ravel times with a multi-layer feed forward neural network", Comput. Aided Civil Infrastruct. Eng., 14, 358-367.
- Parry, R.H.G. and Swain, C.W. (1977a), "Effective stress methods of calculating skin friction on driven piles in soft clay", Ground Eng., 10(3), 24-26.
- Parry, R.H.G. and Swain, C.W. (1977b), "A study of skin friction on piles in stiff clay", Ground Eng., 10(8), 33-37.
- Randolph, M.F., Carter, J.P. and Wroth, C.P. (1979), "Driven piles in clay-the effects of installation and subsequent consolidation", Geotechnique, 29(4), 361-393. https://doi.org/10.1680/geot.1979.29.4.361
- Samui, P. and Sitharam, T.G. (2010), "Site characterization model using articial neural network and kriging", Int. J. Geomech., 10(5), 171-180. https://doi.org/10.1061/(ASCE)1532-3641(2010)10:5(171)
- Sekulic, S. and Kowalski, B.R. (1992), "MARS: a tutorial", J. Chemometr., 6, 199-216. https://doi.org/10.1002/cem.1180060405
- Tomlinson, M.J. (1971), Some effects of pile driving on skin friction, behaviour of piles, Institution of Civil Engineers, London, 107-I 14.
- Vidoli, F. (2011), "Evaluating the water sector in Italy through a two stage method using the conditional robust nonparametric frontier and multivariate adaptive regression splines", Eur. J. Oper. Res., 212, 583-595. https://doi.org/10.1016/j.ejor.2011.02.003
- Yang, C.C., Prasher, S.O., Lacroix, R. and Kim, S.H. (2004), "Application of multivariate adaptive regression splines (mars) to simulate soil temperature", Trans. ASAE, 47(3), 881-887. https://doi.org/10.13031/2013.16085
- Zaman, M., Solanki, P., Ebrahimi, A. and White, L. (2010), "Neural network modeling of resilient modulus using routine subgrade soil properties", Int. J. Geomech., 10(1), 1-12. https://doi.org/10.1061/(ASCE)1532-3641(2010)10:1(1)
- Zhang, G., Xiang, X. and Tang, H. (2011), "Time series prediction of chimney foundation settlement by neural networks", Int. J. Geomech., 11(3), 154-158. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000029
Cited by
- Lateral Load Capacity of Piles in Clay Using Genetic Programming and Multivariate Adaptive Regression Spline vol.45, pp.3, 2015, https://doi.org/10.1007/s40098-014-0142-2
- Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks vol.9, pp.1, 2015, https://doi.org/10.1080/19942060.2015.1011826
- Artificial intelligence design charts for predicting friction capacity of driven pile in clay pp.1433-3058, 2019, https://doi.org/10.1007/s00521-018-3555-5
- Assessment of slope stability using multiple regression analysis vol.13, pp.2, 2011, https://doi.org/10.12989/gae.2017.13.2.237
- Determination of Young Elasticity Modulus in Bored Piles Through the Global Strain Extensometer Sensors and Real-Time Monitoring Data vol.9, pp.15, 2011, https://doi.org/10.3390/app9153060
- An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils vol.21, pp.6, 2011, https://doi.org/10.12989/gae.2020.21.6.583