References
- Aboshi, H. (1973), "An experimental investigation on the similitude consolidation of clay including secondary creep settlement", Proc. of 8th ICSMFE, Moscow, 4(3), 88.
- Adachi, T. and Oka, F. (1982) "Constitutive equations for normally consolidated clay based on elastoviscoplasticity", Soils Found., 22(4), 55-70. https://doi.org/10.3208/sandf1972.22.2_55
- Berry, P.L. and Poskitt, T.J. (1972), "The consolidation of peat", Geotechnique, 22(1), 27-52. https://doi.org/10.1680/geot.1972.22.1.27
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329
- Edil, T.B. and Dhowian, A.W. (1981), "At-rest lateral pressure of peat soils", J. Geotech. Eng. - ASCE, 107(GT2), 201-217.
- Higo, Y., Oka, F., Kodaka, T. and Kimoto, S. (2006), "Three-dimensional strain localization of water-saturated clay and numerical simulation using an elasto-viscoplastic model", Philos. Mag., 86(21-22), 3205-3240. https://doi.org/10.1080/14786430500321203
- Hobbs, N.B. (1986), "Mire morphology and the properties and behavior of some British and foreign peats", Q. J. Eng. Geol. Hydroge., 19, 7-80. https://doi.org/10.1144/GSL.QJEG.1986.019.01.02
- Jaky, J. (1948), "State of stress at great depth", Proc. of 2nd ICSMFE, 1, 103-107.
- Karunawardena, W.A. (2007), Consolidation analysis of Sri Lankan peaty clay using elasto-viscoplastic theory, Ph.D. Thesis, Kyoto University, Japan.
- Karunawardena, W.A. and Kulatilaka, S.A.S. (2003), "Field monitoring of a fill on peaty clay and its modeling", Proc. of 12th Asian Regional Conf. on Soil Mechanics & Geotechnical Eng., Singapore, 4-8, August 2003, Lung et al. eds., World Scientific Publishing Co. 1, 159-162.
- Ketheeswaravenayagam, R. (2006), Finite element modeling of highway embankments over soft sub soil conditions, Master Thesis, University of Moratuwa, Sri Lanka.
- Kimoto, S. and Oka, F. (2005), "An elasto-viscoplastic model for clay considering destructuralization and consolidation analysis of unstable behavior", Soils Found., 45(2), 29-42.
- Kimoto, S., Oka, F. and Higo, Y. (2004), "Strain localization analysis of elasto-viscoplastic soil considering structural degradation", Comput. Method. Appl. M., 193, 2845-2866. https://doi.org/10.1016/j.cma.2003.09.017
- Kugan, R., Puswewala, U.G.A., Kulathilaka, S.A.S. and Peiris, T.A. (2003), "Peaty clay improvement with prefabricated vertical drains", Proc. of Engineering Research Unit, University of Moratuwa, Sri Lanka.
- Kugan, R., Puswewala, U.G.A., Kulathilaka, S.A.S. and Peiris, T.A. (2004), "Consolidation testing of peaty clay", Proc. of Engineering Research Unit, University of Moratuwa, Sri Lanka.
- Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F. and Poulos, H.G. (1977), "Stress-deformation and strength characteristics", Proc. of 9th ICSMFE, Tokyo, 2, 421-494.
- Leroueil, S. and Hight, D.W. (2003), Behavior and properties of natural soils and soft rocks, Characterization and Engineering Properties of Natural Soils, Tan et al. eds., 29-254.
- Leroueil, S. (1996), "Compressibility of clays: Fundamental and practical aspects", J. Geotech. Eng. Div. - ASCE, 122(7), 534-543. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(534)
- Mesri, G., Shahien, M. and Feng, T.W. (1995), "Compressibility parameters during primary consolidation", Proc. Int. Symp. on Compression and Consolidation of Clay soils- IS - Hiroshima's 95, Japan, H. Yoshikuni and O. Kusakabe eds., Balkema, Rotterdam, 2, 1021-1037.
- Mesri, G. and Choi, Y.K. (1985), "The uniqueness of the end-of-primary (EOP) void ratio-effective stress relationship", Proc. 11th ICSMFE, San Francisco, 2587-2590.
- Mesri, G., Stark, T.D., Ajlouni, M.A. and Chen, C.S. (1997), "Secondary compression of peat with or without surcharging", J. Geotech. Eng. - ASCE, 123(5), 411-421. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(411)
- Mitchell, J.K. (1981), "Soil improvement-state of the art report", Proc. of 10th ICSMFE, Stockholm, 4, 509-565.
- Oka, F., Adachi, T. and Okano, Y. (1986), "Two-dimensional consolidation analysis using an elasto-viscoplastic constitutive equation", Int. J. Numer. Anal. Method. Geomech., 10, 1-16. https://doi.org/10.1002/nag.1610100102
- Oka, F. (2005), "Computational modeling of large deformations and the failure of geomaterials, theme lecture", Proc. of 16th ICSMGE, Osaka, 1, 47-95.
- Oka, F., Higo, Y. and Kimoto, S. (2002), "Effect of dilatancy on the strain localization of water-saturated elastoviscoplastic soil", Int. J. Solids Struct., 39, 3625-3647. https://doi.org/10.1016/S0020-7683(02)00171-3
- Oka, F., Yashima, A., Sawada, K. and Aifantis, E.C. (2000), "Instability of gradient-dependent elastoviscoplastic model for clay and strain localization", Comput. Method. Appl. M., 183, 67-86. https://doi.org/10.1016/S0045-7825(99)00212-1
- Perzyna, P. (1963), "The constitutive equations for work-hardening and rate sensitive plastic material", Proc. Vibrational Problems, Warsaw, 4(3), 281-290.
- Pierce, D., Shih, C.F. and Needleman, A. (1984), "A tangent modulus method for rate dependent solids", Comput. Struct., 18(5), 875-887. https://doi.org/10.1016/0045-7949(84)90033-6
- Roscoe, K.H., Schofield, A.N. and Thurairajah, A. (1963), "Yielding of clays in state wetter than critical", Geotechnique, 13(3), 221-240.
- Suklje, L. (1969), Rheological aspects of soil mechanics, Wiley-Interscience, A division of John Wiley & Sons Ltd.
Cited by
- Consolidation settlement of soil foundations containing organic matters subjected to embankment load vol.24, pp.1, 2011, https://doi.org/10.12989/gae.2021.24.1.043