• Title/Summary/Keyword: elasto-viscoplastic consolidation analysis

Search Result 13, Processing Time 0.025 seconds

Elasto-viscoplastic modeling of the consolidation of Sri Lankan peaty clay

  • Karunawardena, Asiri;Oka, Fusao;Kimoto, Sayuri
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.233-254
    • /
    • 2011
  • The consolidation behavior of Sri Lankan peaty clay is analyzed using an elasto-viscoplastic model. The model can describe the secondary compression behavior as a continuous process and it can also account for the effect of structural degradation on the consolidation analysis. The analysis takes into account all the main features involved in the process of peat consolidation, namely, finite strain, variable permeability, and the secondary compression. The material parameters required for the analysis and the procedures to evaluate them, using both standard laboratory and field tests, are explained. Initially, the model performance is assessed by comparing the predicted and the observed peat consolidation behavior under laboratory conditions. The results indicate that the model is capable of predicting the observed creep settlements and the effect of layer thickness on the settlement analysis of peaty clay. Then, the model is applied to predict the consolidation behavior of peaty clay under different field conditions. In this context, firstly, the one-dimensional field consolidation of peaty clay, brought about by the construction of compacted earth fill, is predicted. Then, the two-dimensional peat foundation response upon embankment loading is simulated. A good agreement is seen in the comparison of the predicted results with the field observations.

Soil Stress-Deformation Analysis by Elasto-Plastic Model and Elasto-Viscoplastic Model - Using Back Analysis Method - (탄소성모델과 탄점소성모델을 이용한 지반변형해석 - 역해석 기법의 적용 -)

  • Kwon, Ho Jin;Song, Young Woo;Lee, Won Taek;Byun, Kwang Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.199-208
    • /
    • 1993
  • Using several soil parameters which are obtained from the PI-experimental formulas and the back analysis method, the elastic analysis, the elasto-plastic analysis and the elasto-viscoplastic analysis for soil deformation are executed. Comparing the results with those of consolidation test, the indirect estimation method for soil parameters and the suitability of constitutive models are studied. The elastic analysis using back analysis result and the elasto-plastic analysis using the perconsolidation test. The elasto-viscoplastic analysis disagrees with the results of meability coefficient obtained from back analysis are the nearest to the results of the consolidation test. It is inferred that elasto-viscoplastic model is not adequate to the soil of which plasticity index is low.

  • PDF

Modeling Strain Rate-dependent Behavior in Consolidation of Natural Clay (자연점토의 변형률속도 의존적인 압밀거동의 해석)

  • ;Leroueil, S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.17-28
    • /
    • 1999
  • In order to analyze effects of strain rate on consolidation of natural clay, this paper presents a nonlinear elasto viscoplastic model in which viscoplastic behavior is modeled by a unique effective stress-strain-strain rate relationship (equation omitted). The predicted values using numerical analysis are compared with measured ones in several laboratory tests such as creep test, multistage load test, and relaxation test for Berthierville clay. It is possible to estimate consolidation behavior of natural clay with reasonable accuracy using the proposed nonlinear viscoplastic model.

  • PDF

Two-Dimensional Elasto-Viscoplastic Finite Element Analysis Considering Shield Tunneling Construction Stages (실드터널 시공단계를 고려한 2차원 탄.점소성 유한요소해석)

  • 진치섭;노경배;한상중
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.89-94
    • /
    • 1996
  • The use of shield is increasing day by day, because it's method is advantageous tunneling method to soft and collapsible ground. In case of analyzing shield tunnel by FEM, short term behavior of ground by initial heaving and tail void closure and long terms of it because of consolidation by changes of pore pressures in clay must be considered. In this paper, the shield tunneling construction stages was analyzed from 2 dimensional elasto - viscoplastic finite element program used Mohr - Coulomb yield criterion but not considered the changes of pore pressures. The object of investigation was N - 2 Tunnel. Since the good results of analysis compared to the measured behavior of ground for heaving, tail void closure and liner installation, this results can be applied to design and construction of shield tunneling for the subways, sewage lines etc.

  • PDF

연약지반 변형해석을 위한 다목적 Program개발

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.362-375
    • /
    • 1991
  • Background and Necessity of the study : For more than 20 years, the soil engineering reserach group of Chonnam National University has been performing the deformation analysis of soft clayey foundation, since the University is located near the south-western coast of Korean Peninsulla, along which tide reclamation works have been under proaressing. Associsted with the fact mentioned above, the researchers have been developing a computer program in order to carry out deformation analysis of soft foundation since early 1980. Case-studies : In this research, the Biot's equation was selected as the governing equation coupled with several constitutive models including original and modified Cam-clay models, elasto-viscoplastic model, Lade's model etc. The anisotropy of soi1 can be considered in this program. To validate the accuracy of the computer program developed a couple of case-studies were performed. These include the pilot banking, sand drain considering smear effect and compound foundation reinforced with sheet pile into soft foundation.i) The pilot banking Good results could be acquired by assuming banking load as the body force composed of finite element mesh rather than equivalent concentrated load.ii) The sand drain Due to smear, the delay of consolidation was remarkable at the early stsge. so safety for the failure of foundation should be checked for the initial step of consolidation. iii) The compound foundation Accurate results were obtained by introducing the joint element method for the soft foundation reinforced with sheet pile into soiㅣ.

  • PDF

An Analysis on the Deformation of Clayey Foundation Using Elasto-Viscoplastic Model (${\cdot}$粘塑性構成式을 使用한 粘性土地盤의 變形解析)

  • Lee, Moon-Soo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.2
    • /
    • pp.60-72
    • /
    • 1992
  • This study aims at predicting the behavior of saturated soft clayey foundation subjected to earth structure loads such as tidal dike, embankment etc. by using Biot's consolidation equation coupled with elasto-viscoplastic constitutive model. To validate the computer program developed b author, a case study was performed for the site of Kwang-yang steel works improved by sand drain, where since the beginning of the works, field measurements(settlement, lateral displacement and excess pore water pressure) had been accurately achieved. Comparisons between numerical results and observation values were carried out. The main results obtained are summarized as follows : 1. Settlement and lateral displacement between numerical and observation values show satisfactory accordance. 2. As for the exess pre water pressure, numerical results appear to be larger than observation values, which may be due to the existence of sand seams which were not found during soil investigation. 3. Useful data available for failure prediction of soft foundation can be secured by examining lateral displacement, settlement, exess pore water pressure and stress paths.

  • PDF

Study on Estimation of Equivalent Circle of Plastic Board Drain (PBD의 유효등가경 평가에 관한 연구)

  • You, Seung-Kyong;Lee, Choong-Ho;Yoon, Gil-Lim;Kim, Byung-Tak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.490-496
    • /
    • 2006
  • In order to design accurately plastic board drain (PBB) method, it is important to determine the equivalent circle of PBD. In this paper, a series of numerical analyses on soft ground improved by PBD were carried out, in order to investigate the resonable equivalent circle of PBD considering consolidation behavior of improved soft ground by PBD. The applicability of numerical analyses, in which an elasto-viscoplastic three-dimensional consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of soft ground improved by PBD. And, through the results of the numerical analyses, consolidation behaviors of soft ground during consolidation was elucidated, together with the equivalent circle of PBD considering consolidation behaviors.

  • PDF

Numerical Analyses on Consolidation Promotion Effect of Soft Clay Ground by Prefabricated Vertical Drain (PVD에 의한 연약점토지반의 압밀촉진효과에 대한 수치해석)

  • You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • In this paper, a series of numerical analyses on soft clay ground improved by PVD were carried out, in order to investigate the consolidation promotion effect considering PVD width and surcharge pressure. In the numerical analyses, an elasto-viscoplastic three-dimensional consolidation finite element method was applied, in which the applicability of numerical analyses could be confirmed comparing with consolidation behavior simulated at the laboratory. And, through the results of the numerical analyses, consolidation behaviors of soft clay ground with elapsed time was elucidated, together with the effects of PVD width and surcharge pressure.

  • PDF

3-Dimensional Consolidation Analysis Considering Viscosity on Soft Clay Ground improved by Plastic Board Drain (점성을 고려한 PBD 타설 연약점토지반의 3차원 압밀해석)

  • You, Seung-Kyong;Han, Jung-Gun;Jo, Sung-Min;Kim, Ji-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.4
    • /
    • pp.39-46
    • /
    • 2005
  • A series of numerical analyses on soft clay ground improved by plastic board drain(PBD) were carried out, in order to investigate the consolidation behavior considering viscosity of the improved ground. The applicability of numerical analyses, in which an elasto-viscoplastic three-dimensional consolidation finite element method is applied in this study, was confirmed through comparison between experimental and analytical results. As the analytical results, consolidation behavior of both settlement and excess pore pressure and effective stress in clay were elucidated. Then secondary consolidation characteristics of improved ground were estimated through compare with results of typical one-dimensional consolidation analysis.

  • PDF

Demonstration of Developed Numerical Procedure to Describe 3-dimensional Long-term Behavior of the Pleistocene Marine Foundations (Pleistocene 해저지반의 3차원 장기거동 해석을 위해 개발한 수치해석 기법의 입증)

  • Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.5-14
    • /
    • 2020
  • Kansai International Airport (KIX) was opened in September 1994. Although 26 years have passed since the completion of the first island, long-term settlement is still in progress. This settlement occurs in the Pleistocene layer. For it is not easy to determine the permeability of the Pleistocene sand layer because the thickness and the degree of fine content in the horizontal direction are constantly changing. In addition, it is also a difficult to predict the interactive behavior of the ground due to the construction of the second phase island adjacent to it. In order to solve this problem, a two-dimensional finite element analysis considering elasto-viscoplastic was performed to evaluate the long-term deformation, including the interactive behavior of the alternating Pleistocene foundation due to the construction of two adjacent reclaimed islands. In general, two-dimensional analysis can be used when a section can represent the entire sections. However, Kansai Airport is an artificial reclaimed island so two-dimensional analysis cannot solve the problem such as the stress deformation in the corners of the island. Additionally, the structure of the actual sub-ground through physical exploration is non-homogeneity and its thickness is also not constant. Therefore, there are limitations for the two-dimensional analysis to explain the phenomena. That is, three-dimensional analysis is strongly required. Due to these demands, the author extended the existing two-dimensional program capable of elasto-viscoplastic analysis to three-dimensional and completed the verification of the three-dimensional program developed through one-dimensional consolidation analysis. In order to demonstrate the validity of the developed 3D program that has been verified, an analysis is performed under the same analysis conditions as the existing research using a two-dimensional program. The effectiveness of the developed 3D numerical analysis program was demonstrated by comparing the analysis results with the 2D results and actual measurement data.