DOI QR코드

DOI QR Code

Self-assembly and Mechanism of L-Alanine-based Dihydrazide Derivative as Excellent Gelator of Organic Solvents

  • Wang, Chuan-Sheng (School of Materials and Metallurgy, Northeastern University) ;
  • Wang, Xiao-Hong (Department of Chemistry, Shenyang University of Chemical Technology) ;
  • Li, Zhi-Yuan (Department of Chemistry, Shenyang University of Chemical Technology) ;
  • Wei, Wei (Department of Chemistry, Shenyang University of Chemical Technology) ;
  • Shi, Zhong-Liang (Department of Chemistry, Shenyang University of Chemical Technology) ;
  • Sui, Zhi-Tong (School of Materials and Metallurgy, Northeastern University)
  • Received : 2011.01.10
  • Accepted : 2011.02.13
  • Published : 2011.04.20

Abstract

A new organogelator, L-Alanine dihydrazide derivative can self-assemble in various organic solvents and turned them into thermally reversible physical supramolecular organogels at extremely low concentrations (< 2 wt %). The gel-sol phase transition temperatures ($T_{GS}$) were determined as a function of gelator concentration and the corresponding enthalpies (${\Delta}H_g$) were extracted. Scanning electron microscopy (SEM) measurements revealed that the interspaces of fiber-like network structures were diminished with the increasing of the LMOG concentration. FT-IR spectroscopy studies revealed that hydrogen-bonding and hydrophobic interaction were the driving forces for the formation of the gels. Based on the data of XRD and molecular modeling, the possible packing modes for the formation of organogelator aggregates were proposed.

Keywords

References

  1. Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133. https://doi.org/10.1021/cr9700282
  2. Estroff, L. A.; Hamilton, A. D. Chem. Rev. 2004, 104, 1201. https://doi.org/10.1021/cr0302049
  3. George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489. https://doi.org/10.1021/ar0500923
  4. van Esch, J. H.; Kellogg, R. M.; Feringa, B. L. Angew. Chem. 2000, 112, 2351. https://doi.org/10.1002/1521-3757(20000703)112:13<2351::AID-ANGE2351>3.0.CO;2-2
  5. Kim, T. H.; Kim, D. G.; Lee, M.; Lee, T. S. Tetrahedron 2010, 66, 1667. https://doi.org/10.1016/j.tet.2010.01.006
  6. Sangeetha, N.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821. https://doi.org/10.1039/b417081b
  7. Kato, T.; Frechet, J. M. J. J. Am. Chem. Soc. 1989, 111, 8533. https://doi.org/10.1021/ja00204a044
  8. Vintiloiu, A.; Leroux, J. C. J. Controlled Release 2008, 125, 179. https://doi.org/10.1016/j.jconrel.2007.09.014
  9. Kobayashi, S.; Hamasaki, N.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. J. Am. Chem. Soc. 2002, 124, 6550. https://doi.org/10.1021/ja0260622
  10. Llusar, M.; Roux, C.; Pozzo, J. L.; Sanchez, C. J. Mater. Chem.2003, 13, 442. https://doi.org/10.1039/b212465n
  11. Jung, J. H.; Shinkai, S.; Shimizu, T. Chem. Mater. 2003, 15, 2141. https://doi.org/10.1021/cm0217912
  12. Yang, Y.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K.Chem. Commun. 2004, 1332.
  13. Suzuki, M.; Sakakibara, Y.; Kobayashi, S.; Kimura, M.; Shirai,H.; Hanabusa, K. Polym. J. 2003, 34, 474.
  14. Kato, T. Science 2002, 295, 2414. https://doi.org/10.1126/science.1070967
  15. de Jong, J. J. D.; Lucas, L. N.; Kellogg, R. M.; van Esch, J. H.;Feringa, B. L. Science 2004, 304, 278. https://doi.org/10.1126/science.1095353
  16. Hanabusa, K.; Hiratsuka, K.; Kimura, M.; Shirai, H. Chem. Mater.1999, 11, 649. https://doi.org/10.1021/cm980528r
  17. Kubo, W.; Kambe, S.; Nakade, S.; Kitamura, T.; Hanabusa, K.;Wada, Y.; Yanagida, S. J. Phys. Chem. B 2003, 107, 4374. https://doi.org/10.1021/jp034248x
  18. Shibata, Y.; Kato, T.; Kado, T.; Shiratuchi, R.; Takashima, W.;Kaneto, K.; Hayase, S. Chem. Commun. 2003, 2730.
  19. Duan, P.; Liu, M. Langmuir 2009, 25, 8706. https://doi.org/10.1021/la8043335
  20. Smith, D. K.; Diederich, F. Chem. Eur. J. 1998, 4, 1353. https://doi.org/10.1002/(SICI)1521-3765(19980807)4:8<1353::AID-CHEM1353>3.0.CO;2-0
  21. Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M.; Wright, A. C. J. Am. Chem. Soc. 2003, 125, 9010. https://doi.org/10.1021/ja036111q
  22. Love, C. S.; Hirst, A. R.; Chechik, V.; Smith, D. K.; Ashworth, I.; Brennan, C.Langmuir 2004, 20, 6580. https://doi.org/10.1021/la049575q
  23. Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M. Chem. Eur. J. 2004, 10, 5901. https://doi.org/10.1002/chem.200400502
  24. Hanabusa, K.; Matsumoto, M.; Kimura, M.; Kakehi, A.;Shirai, H. J. Colloid Interface Sci. 2000, 224, 231. https://doi.org/10.1006/jcis.1999.6672
  25. Kim, C.; Kim, K. T.; Chang, Y. H.; Song, H.; Cho, T. Y.; Jeon, H. J. J. Am. Chem. Soc. 2001, 123, 5586. https://doi.org/10.1021/ja015687h
  26. Chow, H. F.; Zhang, J. Tetrahedron 2005, 61, 11279. https://doi.org/10.1016/j.tet.2005.08.006
  27. Chow, H. F.; Zhang, J. Chem. Eur. J. 2005, 11, 5817. https://doi.org/10.1002/chem.200500174
  28. Palui, G.; Simon, F. X.; Schmutz, M.; Mesini, P.; Banerjee, A. Tetrahedron 2008, 64, 175. https://doi.org/10.1016/j.tet.2007.10.061
  29. Motulsky, A.; Lafleur, M.; Couffin-Hoarau, A.C.; Hoarau, D.;Boury, F.; Benoit, J. P.; Leroux, J. C. Biomaterials 2005, 26, 6242. https://doi.org/10.1016/j.biomaterials.2005.04.004
  30. van Esch, J.; Schoonbeek, F.; de Loos, M.; Kooijman, H.; Spek,A. L.; Kellogg, R. M.; Feringa, B. L. Chem. Eur. J. 1999, 5, 937. https://doi.org/10.1002/(SICI)1521-3765(19990301)5:3<937::AID-CHEM937>3.0.CO;2-0
  31. Terech, P.; Rossat, C.; Volino, F. J. Colloid Interface Sci. 2000,227, 363. https://doi.org/10.1006/jcis.2000.6868
  32. Carre, A.; Le Grel, P.; Baudy-Floc’h, M. Tetrahedron Lett. 2001,42, 1887. https://doi.org/10.1016/S0040-4039(01)00035-1
  33. Seo, S. H.; Chang, J. Y. Chem. Mater. 2005, 17, 3249. https://doi.org/10.1021/cm048025a
  34. Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M. Langmuir2004, 20, 7070. https://doi.org/10.1021/la048751s
  35. Suzuki, M.; Sato, T.; Kurose, A.; Shirai, H.; Hanabusa, K. Tetrahedron Lett. 2005, 46, 2741. https://doi.org/10.1016/j.tetlet.2005.02.144
  36. Tan, C.; Su, L.; Lu, R.; Xue, P.; Bao, C.; Liu, X.; Zhao, Y. J. Mol. Liq. 2006, 124, 32. https://doi.org/10.1016/j.molliq.2005.08.001
  37. Jang, W.-D.; Jiang, D.-L.; Aida, T. J. Am. Chem. Soc. 2000, 122, 323.
  38. Jang, W.-D.; Aida, T. Macromolecules 2003, 36, 8461. https://doi.org/10.1021/ma034221b
  39. Estroff, L. A.; Leiserowitz, L.; Addadi, L.; Weiner, S.; Hamilton, A. D. Adv. Mater. 2003, 15, 38. https://doi.org/10.1002/adma.200390004

Cited by

  1. Mechano-responsive gelation of water by a short alanine-derivative vol.10, pp.27, 2014, https://doi.org/10.1039/C4SM00710G