DOI QR코드

DOI QR Code

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu (Department of Chemistry, Hanyang University) ;
  • Kim, You-Young (Department of Chemistry, Hanyang University) ;
  • Park, Tae-Sun (Department of Chemistry, Hanyang University) ;
  • Park, Joon-B. (Institute of Fusion Science, Department of Chemistry Education, Chonbuk National University) ;
  • Ito, Eisuke (Flucto-order Functions Research Team, RIKEN-HYU Collaboration Center) ;
  • Hara, Masahiko (Flucto-order Functions Research Team, RIKEN-HYU Collaboration Center) ;
  • Noh, Jae-Geun (Department of Chemistry, Hanyang University)
  • Received : 2011.01.03
  • Accepted : 2011.02.15
  • Published : 2011.04.20

Abstract

The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

Keywords

References

  1. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzo, R. G.; Whitesides,G. M. Chem. Rev. 2005, 105, 1103. https://doi.org/10.1021/cr0300789
  2. Schreiber, F. J. Phys.: Condens. Matter 2004, 16, R881. https://doi.org/10.1088/0953-8984/16/28/R01
  3. Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, P. Chem. Soc. Rev. 2010, 39, 1805. https://doi.org/10.1039/b907301a
  4. Kang, H.; Lee, N.-S.; Ito, E.; Hara, M.; Noh, J. Langmuir 2010,26, 2983. https://doi.org/10.1021/la903952c
  5. Noh, J.; Hara, M. Langmuir 2002, 18, 1953. https://doi.org/10.1021/la010803f
  6. Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2006,110, 2793. https://doi.org/10.1021/jp055538b
  7. Lee, N.-S.; Kang, H.; Ito, E.; Hara, M.; Noh, J. Bull. Korean Chem. Soc. 2010, 31, 2137. https://doi.org/10.5012/bkcs.2010.31.8.2137
  8. Choi, Y.; Choi, I.; Kang, H.; Cho, J.-H.; Jang, C.-H.; Noh, J. Bull. Korean Chem. Soc. 2010, 31, 904.
  9. Hayashi, T.; Wakamatsu, K.; Ito, E.; Hara, M. J. Phys. Chem. C2009, 113, 18795. https://doi.org/10.1021/jp906494u
  10. Chesneau, F.; Zhao, J.; Shen, C.; Buck, M.; Zharnikov, M. 2010,114, 7112.
  11. Dameron, A. A.; Charles, L. F.; Weiss, P. S. J. Am. Chem. Soc.2005, 127, 8697. https://doi.org/10.1021/ja042621o
  12. Kim, M.; Hohman, J. N.; Morin, E. I.; Daniel, T. A.; Weiss, P. S. J. Phys. Chem. A 2009, 113, 3895. https://doi.org/10.1021/jp810048n
  13. Hohman, J. N.; Zhang, P.; Morin, E. I.; Han, P.; Kim, M.; Kurland,A. R.; McClanahan, P. D.; Balema, V. P.; Weiss, P. S. ACS Nano2009, 3, 527. https://doi.org/10.1021/nn800673d
  14. Fujii, S.; Akiba, U.; Fujihira, M. J. Am. Chem. Soc. 2002, 124,13629. https://doi.org/10.1021/ja026214t
  15. Dameron, A. A.; Hampton, J. R.; Smith, R. K.; Mullen, T. J.;Gillmor, S. D.; Weiss, P. S. Nano Lett. 2005, 5, 1834. https://doi.org/10.1021/nl050981j
  16. Kwon, C. K.; Kim, M. S.; Kim, K. J. Raman Spectrosc. 1989, 20, 575. https://doi.org/10.1002/jrs.1250200905
  17. Noh, J.; Hara, M. Langmuir 2001, 17, 7280. https://doi.org/10.1021/la0100441
  18. Joo, S. W.; Chung, H.; Kim, K.; Noh, J. Surf. Sci. 2007, 601, 3196. https://doi.org/10.1016/j.susc.2007.05.020
  19. Kwon, S.; Jeong, Y.; Lee, Y.; Noh, J. Chem. Lett. 2007, 36, 307.
  20. Kang, H.; Jang, C.-H.; Hara, M.; Noh, J. J. Nanosci. Nanotechnol.2009, 9, 7085.
  21. Kang, H.; Lee, H.; Kang, Y.; Hara, M.; Noh, J. Chem. Commun.2008, 5197.
  22. Kwon, S.; Choi, Y.; Choi, J.; Kang, H.; Chung, H.; Hara, M.; Noh, J. Ultramicroscopy 2008, 108, 1311. https://doi.org/10.1016/j.ultramic.2008.04.035
  23. Noh, J. Bull. Korean Chem. Soc. 2006, 27, 944. https://doi.org/10.5012/bkcs.2006.27.6.944
  24. Poirier, G. E.; Tarlov, M. J.; Rushmeier, H. E. Langmuir 1994, 10, 2883.
  25. Choi, Y.; Jeong, Y.; Chung, H.; Ito, E.; Hara, M.; Noh, J. Langmuir 2008, 24, 91. https://doi.org/10.1021/la701302g
  26. Ishida, T.; Hara, M.; Kojima, M.; Tsuneda, S.; Nishida, N.; Sasabe, H.; Knoll, W. Langmuir 1998, 14, 2092. https://doi.org/10.1021/la971104z
  27. Noh, J.; Jeong, Y.; Ito, E.; Hara, M. J. Phys. Chem. C 2007, 111, 2691. https://doi.org/10.1021/jp067093c
  28. Noh, J.; Ito, E.; Hara, M. J. Colloid Interface Sci. 2010, 342, 513. https://doi.org/10.1016/j.jcis.2009.10.076
  29. Kondo, H.; Komada, C.; Nozoye, H. J. Phys. Chem. B 1998, 102, 2310. https://doi.org/10.1021/jp980175j

Cited by

  1. Phase Transition of Octaneselenolate Self-assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2623
  2. Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers: Cu, Ag, and Au vol.116, pp.33, 2012, https://doi.org/10.1021/jp3041204
  3. Influence of Thiol Molecular Backbone Structure on the Formation and Reductive Desorption of Self-Assembled Aromatic and Alicyclic Thiol Monolayers on Au(111) Surface vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1383
  4. Photoluminescence of Charged CdSe/ZnS Quantum Dots in the Gas Phase: Effects of Charge and Heating on Absorption and Emission Probabilities vol.8, pp.12, 2014, https://doi.org/10.1021/nn505374d
  5. Thermally Brightened CdSe/ZnS Quantum Dots as Noncontact Probes for Surface Chemistry Studies of Dark Nanoparticles Trapped in the Gas Phase vol.119, pp.26, 2015, https://doi.org/10.1021/jp5109027