References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, with corrections, Washington, 1965.
-
H. Alzer, Inequalities for the volume of the unit ball in
${\mathbb{R}}^n$ , J. Math. Anal. Appl. 252 (2000), no. 1, 353-363. https://doi.org/10.1006/jmaa.2000.7065 - H. Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math. 16 (2004), no. 2, 181-221. https://doi.org/10.1515/form.2004.009
- H. Alzer and A. Z. Grinshpan, Inequalities for the gamma and q-gamma functions, J. Approx. Theory 144 (2007), no. 1, 67-83. https://doi.org/10.1016/j.jat.2006.04.008
- R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41 (1988), no. 2, 21-23.
- N. Batir, An interesting double inequality for Euler's gamma function, J. Inequal. Pure Appl. Math. 5 (2004), no. 4, Article 97, 3 pp.; Available online at http://www.emis.de/journals/JIPAM/article452.html?sid=452.
- N. Batir, Some new inequalities for gamma and polygamma functions, J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 103, 9 pp.; Available online at http://www.emis.de/journals/JIPAM/article577.html?sid=577.
- C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), no. 4, 433-439. https://doi.org/10.1007/s00009-004-0022-6
- J. Bustoz and M. E. H. Ismail, On gamma function inequalities, Math. Comp. 47 (1986), no. 176, 659-667. https://doi.org/10.1090/S0025-5718-1986-0856710-6
- J. Cao, D.-W. Niu, and F. Qi, A Wallis type inequality and a double inequality for probability integral, Aust. J. Math. Anal. Appl. 4 (2007), no. 1, Art. 3, 6 pp.; Available online at http://ajmaa.org/cgi-bin/paper.pl?string=v4n1/V4I1P3.tex.
- Ch.-P. Chen, Monotonicity and convexity for the gamma function, J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 100, 6 pp.; Available online at http://www.emis.de/journals/JIPAM/article457.html?sid=457.
- Ch.-P. Chen and F. Qi, Best upper and lower bounds in Wallis' inequality, J. Indones. Math. Soc. 11 (2005), no. 2, 137-141.
- Ch.-P. Chen and F. Qi, Completely monotonic function associated with the gamma functions and proof of Wallis' inequality, Tamkang J. Math. 36 (2005), no. 4, 303-307.
- Ch.-P. Chen and F. Qi, The best bounds in Wallis' inequality, Proc. Amer. Math. Soc. 133 (2005), no. 2, 397-401. https://doi.org/10.1090/S0002-9939-04-07499-4
-
Ch.-P. Chen and F. Qi, The best bounds to
${\frac{(2n)!}{2^{2n}(n!)^2}}$ , Math. Gaz. 88 (2004), 54-55. - J. Dutka, On some gamma function inequalities, SIAM J. Math. Anal. 16 (1985), no. 1, 180-185. https://doi.org/10.1137/0516013
- N. Elezovic, C. Giordano and J. Pecaric, The best bounds in Gautschi's inequality, Math. Inequal. Appl. 3 (2000), no. 2, 239-252.
- W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. Phys. 38 (1959/60), 77-81.
- A. Z. Grinshpan and M. E. H. Ismail, Completely monotonic functions involving the gamma and q-gamma functions, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1153-1160. https://doi.org/10.1090/S0002-9939-05-08050-0
- B.-N. Guo and F. Qi, A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (2010), no. 2, 21-29.
- B.-N. Guo and F. Qi, An alternative proof of Elezovic-Giordano-Pecaric's theorem, Math. Inequal. Appl. 14 (2011), no. 1, in press.
- B.-N. Guo and F. Qi, Some logarithmically completely monotonic functions related to the gamma function, J. Korean Math. Soc. 47 (2010), no. 6, 1283-1297; Available online at http://dx.doi.org/10.4134/JKMS.2010.47.6.1283.
- D. K. Kazarinoff, On Wallis' formula, Edinburgh Math. Notes 1956 (1956), no. 40, 19-21.
- D. Kershaw, Some extensions of W. Gautschi's inequalities for the gamma function, Math. Comp. 41 (1983), no. 164, 607-611.
- S. Koumandos, Remarks on a paper by Chao-Ping Chen and Feng Qi, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1365-1367.
- A. Laforgia, Further inequalities for the gamma function, Math. Comp. 42 (1984), no. 166, 597-600. https://doi.org/10.1090/S0025-5718-1984-0736455-1
- I. Lazarevic and A. Lupas, Functional equations for Wallis and gamma functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461-497 (1974), 245-251.
- D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
- F. Qi, A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi-Kershaw's inequality, J. Comput. Appl. Math. 224 (2009), no. 2, 538-543; Available online at http://dx.doi.org/10.1016/j.cam.2008.05.030.
- F. Qi, A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw's double inequality, J. Comput. Appl. Math. 206 (2007), no. 2, 1007-1014; Available online at http://dx.doi.org/10.1016/j.cam.2006.09.005.
- F. Qi, A completely monotonic function involving the divided difference of the psi function and an equivalent inequality involving sums, ANZIAM J. 48 (2007), no. 4, 523-532. https://doi.org/10.1017/S1446181100003199
- F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Art. ID 493058, 84 pp.; Available online at http://dx.doi.org/10.1155/2010/493058.
- F. Qi, Bounds for the ratio of two gamma functions-From Wendel's limit to Elezovic-Giordano-Pecaric's theorem, Available online at http://arxiv.org/abs/0902.2514.
- F. Qi, Monotonicity results and inequalities for the gamma and incomplete gamma functions, Math. Inequal. Appl. 5 (2002), no. 1, 61-67.
- F. Qi, Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct. 18 (2007), no. 7-8, 503-509; Available online at http://dx.doi.org/10.1080/10652460701358976.
- F. Qi and Ch.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), no. 2, 603-607; Available online at http://dx.doi.org/10.1080/10652460701318418.
- F. Qi, L.-H. Cui, and S.-L. Xu, Some inequalities constructed by Tchebysheff's integral inequality, Math. Inequal. Appl. 2 (1999), no. 4, 517-528.
- F. Qi and B.-N. Guo, A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw's double inequality, J. Comput. Appl. Math. 212 (2008), no. 2, 444-456; Available online at http://dx.doi.org/10.1016/j.cam.2006.12.022.
- F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 8, 63-72; Available online at http://rgmia.org/v7n1.php.
- F. Qi and B.-N. Guo, Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications, Commun. Pure Appl. Anal. 8 (2009), no. 6, 1975-1989; Available online at http://dx.doi.org/10.3934/cpaa.2009.8.1975.
- F. Qi and B.-N. Guo, Wendel's and Gautschi's inequalities: refinements, extensions, and a class of logarithmically completely monotonic functions, Appl. Math. Comput. 205 (2008), no. 1, 281-290; Available online at http://dx.doi.org/10.1016/j.amc.2008.07.005.
- F. Qi, B.-N. Guo, and Ch.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 5, 31-36; Available online at http://rgmia.org/v7n1.php.
- F. Qi, B.-N. Guo, and Ch.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), no. 1, 81-88. https://doi.org/10.1017/S1446788700011393
- F. Qi, B.-N. Guo, and Ch.-P. Chen, The best bounds in Gautschi-Kershaw inequalities, Math. Inequal. Appl. 9 (2006), no. 3, 427-436.
- G. N. Watson, A note on Gamma functions, Proc. Edinburgh Math. Soc. (2) 11 (1958/1959).
- G. N. Watson, A note on Gamma functions, Edinburgh Math. Notes No. 42 (misprinted 41) (1959), 7-9.
- E. W. Weisstein, Wallis Cosine Formula, From MathWorld-A Wolfram Web Resource; Available online at http://mathworld.wolfram.com/WallisCosineFormula.html.
- J. G. Wendel, Note on the gamma function, Amer. Math. Monthly 55 (1948), no. 9, 563-564. https://doi.org/10.2307/2304460
- D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.
- Y.-Q. Zhao and Q.-B. Wu, Wallis inequality with a parameter, J. Inequal. Pure Appl. Math. 7 (2006), no. 2, Article 56, 10 pp.; Available online at http://www.emis.de/journals/JIPAM/article673.html?sid=673.
Cited by
- A sharp two-sided inequality for bounding the Wallis ratio vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0560-4
- Some inequalities for the trigamma function in terms of the digamma function vol.271, 2015, https://doi.org/10.1016/j.amc.2015.09.039
- Complete monotonicity of two functions involving the tri-and tetra-gamma functions vol.65, pp.1, 2012, https://doi.org/10.1007/s10998-012-9562-x
- On proofs for monotonicity of a function involving the psi and exponential functions vol.33, pp.1, 2013, https://doi.org/10.1524/anly.2013.1175
- Complete monotonicity of functions involving the $$q$$ q -trigamma and $${q}$$ q -tetragamma functions vol.109, pp.2, 2015, https://doi.org/10.1007/s13398-014-0193-3
- On approximating the error function vol.2016, pp.1, 2016, https://doi.org/10.1186/s13660-016-1261-3
- A completely monotonic function involving the tri- and tetra-gamma functions vol.63, pp.3, 2013, https://doi.org/10.2478/s12175-013-0109-2
- Bounds for the ratio of two gamma functions: from Wendel’s asymptotic relation to Elezović-Giordano-Pečarić’s theorem vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-542
- Some conditions for a class of functions to be completely monotonic vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-014-0534-y
- Some best approximation formulas and inequalities for the Wallis ratio vol.253, 2015, https://doi.org/10.1016/j.amc.2014.12.039
- Sharp Inequalities for Polygamma Functions vol.65, pp.1, 2015, https://doi.org/10.1515/ms-2015-0010
- Some monotonicity properties and inequalities for the generalized digamma and polygamma functions vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1844-2
- Some exact constants for the approximation of the quantity in the Wallis’ formula vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-67
- On complete monotonicity for several classes of functions related to ratios of gamma functions vol.2019, pp.1, 2019, https://doi.org/10.1186/s13660-019-1976-z