DOI QR코드

DOI QR Code

The Effect of Electroacupuncture on Reactive Gliosis Expressing GFAP in Rat with Transient Global Cerebral Ischemia

흰쥐 일과성 뇌허혈 시 GFAP으로 표지되는 반응성 신경아교세포증에 대한 전침의 효과

  • 조미숙 (나사렛대학교 물리치료학과)
  • Received : 2010.12.07
  • Accepted : 2011.02.18
  • Published : 2011.02.28

Abstract

The purpose of this study was carried out to investigate the effect of electroacupuncture on reactive gliosis expressing GFAP in rat with transient global cerebral ischemia. Subjects were randomly divided into two groups, a control group and a electroacupuncture group on ST36, LI11 and SP9 with 2 Hz and 1 mA. The rats were sacrificed on 1, 3 and 7 days after transient cerebral ischemia using ligation of left common carotid artery. After making brain slide sections, they were immunostained with GFAP antisera(1:2,500). The results were as follows: The numbers of astrocytes of electroacupuncture group were decreased than those of control group at every 1, 2 and 7 days. Especially, the numbers of astrocytes at 3 days(p<0.01) and 8 days(p<0.05) were different statistically. And astrocytes had resting, hypertrophic and moving types on cerebral cortex. The decrease of numbers of astrocytes expressing GFAP showed that electroacupuncture could localise and minimize the brain damage by transient cerebral ischemia and cause brain cell plasticity.

본 연구는 전침자극이 일과성 뇌허혈이 유발된 흰쥐 대뇌피질에서 GFAP으로 표지되는 반응성 별아교세포증에 미치는 효과를 동정하기위해서 시행되었다. 실험동물은 전침자극군과 대조군으로 구분하였고, 다시 각 집단을 1일, 3일, 7일 군으로 나누어 각기 15마리씩 무작위 배분하여 실험에 사용하였다. 전침은 인체의 족삼리, 곡지, 음릉선에 상응하는 부위에 자침하고 2 Hz의 근육수축이 현저히 보일 때까지 고강도 (1mA)를 자극하였으며, 전침은 연속파, 직각파, 0.2 ms duration으로 매일 1회 오전 10~12시에 10 분 씩 총 10 회 시행한 뒤, 뇌의 조직절편을 제작하여 GFAP에 대한 면역조직화학염색을 실시해 다음과 같은 결과를 산출 하였다. GFAP의 발현은 뇌허혈로 인해 손상이 유발된 대뇌피질의 혈관주위 및 대뇌피질에서 현저하게 높은 수준으로 관찰되었다. 실험군에서 면역조직화학적으로 표지된 별아교세포들을 계수한 바, 대조군에 비해 뇌허혈이 유발된 1 일 군에서 전침자극군이 약간 감소하였고, 3 일 후에는 현저히 감소하였으며, 7 일 후에는 그 감소정도가 둔화되는 양상을 나타냈다. 대조군에 비해 전침자극군에서 GFAP으로 표지된 별모양아교세포의 수가 모두 감소한 것은 전침자극에 의해 손상의 정도가 감소하여, 전침자극이 신경가소성을 유발시키고 있다는 것으로 관찰되었다.

Keywords

References

  1. A. E. Baird, A. Benfield, G. Schlaug, and B. Siewert. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weight. magnetic resonance imaging. Ann Neurol. Vol.41, No.5, pp.581-589, 1997. https://doi.org/10.1002/ana.410410506
  2. S. W. Levison, R. P. Rothstein, and M. J. Romanko, Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells. Dev Neurosci. Vol.23, No.3, pp.234-47, 2001. https://doi.org/10.1159/000046149
  3. C. Iadecola, F. Zhang, and R. Casey. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci. Vol17, pp.9157-9164, 1997.
  4. M. Nagayama, F. Zhang, and C. Iadecola, Delayed treatment with aminoguanidine decreases focal cerebral ischemic damage and enhances neurologic recovery in rats. J Cereb
  5. N. Tateishi, T. Mori, and Y. Kagamiishi, Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats. J Cereb Blood Flow Metab. Vol.22, No.6, pp.723-734, 2002. https://doi.org/10.1097/00004647-200206000-00011
  6. J. A. Alves, P. Barone, and S. Engelender, Initial stages of radial gliaastrocytic transformation in the early postnatal anterior subventricular zone. J Neurobiol. Vol.52, No.3, pp.251-265, 2002. https://doi.org/10.1002/neu.10087
  7. M. Pekny and M. Nilsson, Astrocyte activation and reactive gliosis. Glia. Vol.50, pp.427-434, 2005. https://doi.org/10.1002/glia.20207
  8. A. Buffo, C. Rolando, and S. Ceruti, Astrocytes in the damaged brain : Molecular and cellular insights into their reactiv response and healing potential. Biochemical Pharmacology. Vol.99, pp.77-89, 2010.
  9. A. Buffo, I. Rite, and P. Tripathi, Origin and progeny of reactive gliosis : a source of multipotent cells in the injured brain. Proc Natl Aca Sci USA. Vol.105, pp.3581-3586, 2008. https://doi.org/10.1073/pnas.0709002105
  10. A. Buffo, C. Rolando, and S. Ceruti, Astrocytes in the damaged brain : Molecular and cellular insights into their reactiv response and healing potential. Biochemical Pharmacology. Vol.99, pp.77-89, 2010.
  11. 손인석, 최병태, 장경전. 고빈도 120 Hz 전침이 Carragreenan으로 유발된 흰쥐의 Postaglandin E2와 척수 N-Methyl-D-Aspartate Receptor 발현에 미치는 영향. 대한침구학회지, Vol.20, No.3, pp.15-23, 2003.
  12. 신홍기, 박동석, 이서은 등. 전침자극이 흰쥐후각 세포의 유해반응에 미치는 효과의 특성, 대한침구학회지, Vol.20, No.3, pp.117-130, 2003.
  13. 손인석, 최병태, 장경전, 고빈도 120 Hz 전침이 Carragreenan으로 유발된 흰쥐의 Postaglandin E2와 척수 N-Methyl-D-Aspartate Receptor 발현에 미치는 영향. 대한침구학회지. Vol20, No.3, pp.15-23, 2003.
  14. 신홍기, 박동석, 이서은, 전침자극이 흰쥐후각세포의 유해반응에 미치는 효과의 특성. 대한침구학회지. Vol.20, No.3, pp.117-130, 2003.
  15. 류성룡, 백용현, 박동석. 전침자극의 Collagen 유발 관절염 모델에 대한 진통효과 및 기전에 관한연구. 대한침구학회지, Vol.23, No.3, pp.77-90, 2006.
  16. B. Liu, R. X. Zhang, and L. Wang, Effects of pertussis toxin lectroacupuncture-produced anti-hyperalgesia in inflamed rats. Brain Res. Vol.1044, No.1, pp.87-92, 2005. https://doi.org/10.1016/j.brainres.2005.03.006
  17. 신홍기, 이경희, 박동석. 전침자극이 만성통증을 억제하는 아드레날린성 기전에 대한 연구, 대한한의학회지, Vol.25, No.3, pp.66-67, 2004.
  18. T. Inder, P. S. Huppi, and G. P. Zientara, Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J Pediatr. Vol.134, No.5, pp.631-634, 1999. https://doi.org/10.1016/S0022-3476(99)70251-9
  19. A. E. Baird, A. Benfield, G. Schlaug, and B. Siewert, Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weight. magnetic resonance imaging. Ann Neurol, Vol.41, No.5, pp.581-589, 1997. https://doi.org/10.1002/ana.410410506
  20. 손영주, 정혁상, 구자승, 흰쥐의 족삼리 및 태충전침자극에따른 뇌대사활성의 변화. 대한침구학회지, Vol.19, No.1, pp.159-174, 2002.
  21. A. Buffo, C. Rolando, and S. Ceruti, Astrocytes in the damaged brain : Molecular and cellular insights into their reactiv response and healing potential. Biochemical Pharmacology, Vol.99, pp.77-89, 2010.
  22. R. S. Cameron and P. Rakic, Glial cell lineage in the cerebral cortex: a review and synthesis. Glia. Vol.4, No.2, pp.124-37, 1991. https://doi.org/10.1002/glia.440040204
  23. M. Kalman and B. M. Ajtai, A comparison of intermediate filament markers for presumptive astroglia in the developing rat neocortex: immunostaining against nestin reveals more detail, than GFAP or vimentin. Int J Dev Neurosci. Vol.19, No.1, pp.101-108, 2001. https://doi.org/10.1016/S0736-5748(00)00058-7
  24. T. Voigt. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol. Vol.289, No.1, pp.74-88, 1989. https://doi.org/10.1002/cne.902890106
  25. S. O. Suzuki and J. E. Goldman, Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration, J. Neurosci. Vol.23, No.10, pp.4240-4250, 2003.
  26. S. Ueda and X. F. Gu, Whitaker-Azmitia PM et al. Neuro-glial neurotrophic interaction in the S-100 beta retarded mutant mouse. Brain Res. Vol.633(1-2), pp.275-283, 1994. https://doi.org/10.1016/0006-8993(94)91549-0
  27. A. Yokoyama, A. Sakamoto, and K. Kameda, NG2 proteoglycan-expressing microglia as multipotent neural progenitors in normal and pathologic brains. Glia. Vol.53, No.7, pp.754-768, 2006. https://doi.org/10.1002/glia.20332
  28. U. Missler and M. Wiesmann, Measurement of S-100 protein in human blood and cerebrospinal fluid: analytical method and preliminary clinical results. Eur J Clin Chem Clin Biochem. Vol.33, No.10, pp.743-748, 1995.
  29. S. Sun, M. Cha, M. Han, T. T. Li, Evidence for suppression of electroacupuncture on spinal glial activation and behavioral hypersensitivity in a rat model of monoarthritis. Brain Res. Bul. Vol.75, pp.83-93, 2008. https://doi.org/10.1016/j.brainresbull.2007.07.027
  30. Y. H. Chubg, C. M. Shin, and M. J. Kim, Enhanced expression of L-type Ca2+ channels in reactive astrocytes after ischemic injury in rats. Neurosci Let. Vol.302, pp.93-96, 2001. https://doi.org/10.1016/S0304-3940(01)01683-4
  31. C. Du, R. Hu, and C. A. Csernansky, Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Metab, Vol.16, No.2, pp.195-201, 1996. https://doi.org/10.1097/00004647-199603000-00003
  32. V. Biran, L. M. Joly, and A. Heron, Glial activation in white matter following ischemia in the neonatal P7 rat brain. Exp Neurol. Vol.199, No.1, pp.103-12, 2006. https://doi.org/10.1016/j.expneurol.2006.01.037
  33. C. C. Chao, S. Hu, and W. S. Sheng, Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia, Vol.16, No.3, pp.276-284, 1996. https://doi.org/10.1002/(SICI)1098-1136(199603)16:3<276::AID-GLIA10>3.0.CO;2-X
  34. R. S. Cameron and P. Rakic, Glial cell lineage in the cerebral cortex: a review and synthesis. Glia. Vol.4, No.2, pp.124-137, 1991. https://doi.org/10.1002/glia.440040204
  35. S. Ueda, X. F. Gu, and P. M. Whitaker-Azmitia, Neuro-glial neurotrophic interaction in the S-100 beta retarded mutant mouse. Brain Res. Vol633, No.1-2, pp.275-283, 1994. https://doi.org/10.1016/0006-8993(94)91549-0
  36. J. E. Rice, 3rd, R. C. Vannucci, and J. B. Brierley, The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. Vol.9, No.2, pp.131-141, 1981. https://doi.org/10.1002/ana.410090206
  37. J. Ong, J. M. Plane, and J. M. Parent, Hypoxicischemic injury stimulates subventricular zone proliferation and neurogenesis in the neonatal rat. Pediatr Res. Vol.58, No.3, pp.600-606, 2005. https://doi.org/10.1203/01.PDR.0000179381.86809.02
  38. S. Ueda, X. F. Gu, and P. M. Whitaker-Azmitia, Neuro-glial neurotrophic interaction in the S-100 beta retarded mutant mouse. Brain Res, Vol.633, No.1-2, pp.275-283, 1994. https://doi.org/10.1016/0006-8993(94)91549-0
  39. 신홍기, 박동석, 이서은, 전침자극이 흰쥐후각세포의 유해반응에 미치는 효과의 특성. 대한침구학회지, Vol.20, No.3, pp.117-130, 2003.
  40. M. Culcasi, M. Lafon-Cazal, and S. Pietri, Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J Biol Chem. Vol.269, No.17, pp.12589-12593, 1994.
  41. A. K. Loihl, V. Asensio, and I. L. Campbell, Expression of nitric oxide synthase (NOS)-2 following permanent focal ischemia and the role of nitric oxide in infarct generation in male, female and NOS-2 gene-deficient mice. Brain Res. Vol.830, No.1, pp.155-164, 1999. https://doi.org/10.1016/S0006-8993(99)01388-8
  42. 류성룡, 백용현, 박동석. 전침자극의 Collagen 유발 관절염 모델에 대한 진통효과 및 기전에 관한 연구. 대한침구학회지. Vol.23, No.3, pp.77-90, 2006.
  43. M. Nagayama, F. Zhang, C. Iadecola, Delayed treatment with aminoguanidine decreases focal cerebral ischemic damage and enhances neurologic recovery in rats. J Cereb Blood Flow Metab. Vol.18, No.10, pp.1107-1113, 1998. https://doi.org/10.1097/00004647-199810000-00007
  44. 손영주, 정혁상, 구자승, 흰쥐의 족삼리 및 태충전침자극에따른 뇌대사활성의 변화. 대한침구학회지, Vol.19. No.1, pp.159-174, 2002.