DOI QR코드

DOI QR Code

Behavior of Cobalt Extraction from Cobalt Sulphate solution using Supercritical 2

황산코발트용액(溶液)으로부터 초임계(超臨界CO2에 의한 코발트 추출거동(抽出擧動)

  • Shin, Shun-Myung (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Joo, Sung-Ho (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Sohn, Jeong-Soo (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Kang, Jin-Gu (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM))
  • 신선명 (한국지질자원연구원 광물자원연구본부) ;
  • 주성호 (한국지질자원연구원 광물자원연구본부) ;
  • 손정수 (한국지질자원연구원 광물자원연구본부) ;
  • 강진구 (한국지질자원연구원 광물자원연구본부)
  • Received : 2011.08.16
  • Accepted : 2011.10.20
  • Published : 2011.12.31

Abstract

Supercritical $CO_2$($scCO_2$) extraction has a great possibility to be a new process to recover metal and to replace the existing leaching/solvent extraction processes. The cobalt extraction was carried out using $scCO_2$ from cobalt sulphate solution. The bis (2,4,4-trimethylpentyl) phosphinic acid and diethylamine ligands were used to extract cobalt ion in $scCO_2$. The recommended method consists of $scCO_2$/extractants complexation process and metal extraction process at 60, 200bar. Experimental results showed that the extraction efficiency of Co was increased by 16-99% with increasing the ligand amount.

초임계 2추출은 기존의 금속추출/용매추출 공정을 대체할 수 있는 새로운 공정으로써의 큰 가능성을 가지고 있는 기술이다. 초임계 2를 이용하여 황산코발트용액으로부터 코발트의 추출에 대한 연구를 수행하였다. 코발트의 추출을 위해 bis (2,4,4-trimethylpentyl) phosphinic acid 및 diethylamine을 초임계 2와 함께 추출제로 사용하였으며 2의 추출거동을 관찰하였다. 초임계 2추출은 $60^{\circ}C$, 200 bar의 조건에서 실시하였고 실험은 초임계 2추출제 착염화과정과 금속추출과정으로 구성된 공정을 이용하여 진행하였다. 실험결과 코발트의 추출률은 추출제 투입량에 따라 16-99%까지 증가하였다.

Keywords

References

  1. Can Erkey., 2000: Supercritical carbon dioxide extraction of metals from aqueous solutions: a review, Journal of Supercritical Fluids 17, pp. 259-287. https://doi.org/10.1016/S0896-8446(99)00047-9
  2. Y.Arai, T. Sako, and Y. Takebayashi, 2002: Supercritical Fluids: molecular Interactions, Physical Properties, and New applications, Springer-Verlag Heidelberg, New York, MA.
  3. McHugh M.A., Krukonis V.J., 1994: Supercritical Fluid Extraction: Principles and Practice, Butterworth-Heinemann, Boston, MA.
  4. Y. Lin, R.D. Brauer, K.E. Laintz, and C.M. Wai., 1993: Supercritical fluid extraction of lanthnides and actinides from solid materials with a fluorinated-diketone, Anal. Chem., 65, pp. 2549. https://doi.org/10.1021/ac00066a027
  5. Y. Lin, C.M Wai, F.M. Jean, and R.D. Brauer, 1994: Supercritical fluid extraction of thorium and uranium ions from solid and liquid materials with fluorinated-diketones and tributyl phosphate, Environ. Sci. Technol., 28, pp. 1190. https://doi.org/10.1021/es00055a034
  6. Y. Lin, N.G. Smart, and C.M. Wai, 1995: Supercritical fluid extraction of uranium and thorium from nitric acid solutions with organophosphorous reagents, Environ. Sci. Technol, 29, pp. 2706. https://doi.org/10.1021/es00010a036
  7. C.M. Wai, Y. Lin, M. Ji, K.L. Toews, and N.G. Smart, 1999: Extraction and separation of uranium and lanthanides with supercritical fluids, American Chemaical Society, 390.
  8. C.I. Wu, J.W. Huang, Y.L. Wen, S.B. Wen, Y.H. Shen, and M.Y. Y, 2008: Preparation of $TiO_2$ nanoparticles by supercritical carbon dioxide, Materials Letters, 62, pp. 1923-1926. https://doi.org/10.1016/j.matlet.2007.10.043