Thermal Conductivity and Viscosity of Distilled Water/Commercial Coolant Based $Al_2O_3$ Nanofluids

증류수-부동액 혼합 $Al_2O_3$ 나노유체의 열전도도와 점성계수

  • Kwon, Hey-Lim (Deptartment of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Hwang, Kyo-Sik (Deptartment of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Jang, Seok-Pil (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 권혜림 (한국항공대학교 항공우주 및 기계공학과) ;
  • 황교식 (한국항공대학교 항공우주 및 기계공학과) ;
  • 장석필 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2010.09.29
  • Accepted : 2010.12.07
  • Published : 2011.05.01

Abstract

Experimental investigations are conducted to figure out the feasibility of $Al_2O_3$ nanofluids as the alternative coolant for car engine. For the purpose, the thermal conductivities and viscosities of water/commercial coolant based $Al_2O_3$ nanofluids with 0.3, 1.0, 2.0 and 3.0 vol. % at temperatures ranging from $25^{\circ}C$ to $35^{\circ}C$ are measured. Thermal conductivities are measured using the transient hot-wire method and also viscosities are measured by Brookfield LVDV-III rheometer. Based on the results, it is shown that thermal conductivity of $Al_2O_3$ nanofluids with 3.0 vol. % is increased about 11% at $35^{\circ}C$ and the increment of viscosity approaches to 84% at shear rate of 600(1/s) and 80% at shear rate of 960(1/s) in the same temperature. with fundamental data for the thermal conductivity and viscosity of the nanofluids, the feasibility of $Al_2O_3$ nanofluids as the alternative coolant for car engine are discussed.

Keywords

References

  1. M. S. Lyu, "Vehicle Fuel Economy Improvement by Studies on the Engine Cooling and Ancilliaries System of the Heavy Duty Engine," Transactions of KSAE, Vol.15, No.3, pp.79-84, 2007.
  2. Y. S. Lyu, J. H. Ryu, S. W. Jung, M. S. Jeon, D. W. Kim, M. D. Eom and J. C. Kim, "A Study on the Charateristics of Carbon Dioxide Emissions from Gasoline Passenger Cars," Transactions of KSAE, Vol.15, No2, pp.58-64, 2007.
  3. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thomson, "Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol based Nanofluids Containing Copper Nanoparticles," Appl. Phys. Lett., Vol.78, No.6, pp.718- 720, 2001. https://doi.org/10.1063/1.1341218
  4. S. H. Kim, S. R. Choi and D. Kim, "Thermal Conductivity of Metaloxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation," ASME J. Heat. Transf., Vol.129, pp.298-307, 2007. https://doi.org/10.1115/1.2427071
  5. S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles," J. Heat Transf., Vol.121, pp.280-289, 1999. https://doi.org/10.1115/1.2825978
  6. C. H. Li and G. P. Peterson, "Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (nanofluids)," J. Appl. Phys., Vol.99, 084314, 2006. https://doi.org/10.1063/1.2191571
  7. C. H. Li and G. P. Peterson, "The Effect of Particle Size on the Effective Thermal Conductivity of $Al_{2}O_{3}$-water Nanofluids," J. Appl. Phys., Vol.101, 044312, 2007. https://doi.org/10.1063/1.2436472
  8. S. M. S. Murshed, K. C. Leong and C. Yang, "Enhanced Thermal Conductivity of $TiO_{2}$- water Based Nanofluids," Int. J. Therm. Sci., Vol.44, pp.367-373, 2005. https://doi.org/10.1016/j.ijthermalsci.2004.12.005
  9. S. M. S. Murshed, K. C. Leong and C. Yang, "Investigations of Thermal Conductivity and Viscosity of Nanofluids," Int. J. Therm. Sci., Vol.47, pp.560-568, 2008. https://doi.org/10.1016/j.ijthermalsci.2007.05.004
  10. H. E. Patel, S. K. Das, T. Sundararajan, N. A. Sreekumaran, B. George and T. Pradeep, "Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects," Appl. Phys. Lett., Vol.83, No.14, pp.2931-2933, 2003. https://doi.org/10.1063/1.1602578
  11. J. A. Eastman, S. U. S. Choi, S. Li and L. J. Thompson, "Enhanced Thermal Conductivity through the Development of Nanofluids," Proc. Symp. Nanophase and Nanocomposite Mater. II, Vol.457, pp.2-11, 1997.
  12. M. P. Beck, Y. Yuan, P. Warrier, A. S. Teja, "The Thermal Conductivity of Alumina Nanofluids in Water, Ethylene Glycol, and Thylene Glycol + Water Mixtures," Journal of Nanopart Research Paper, Vol.12, No.4, pp.1469-1477, 2009.
  13. H. E. Patel, T. Sundararajan and S. K. Das, "An Experimental Investigation into the Thermal Conducticity Enhancement in Oxide and Metallic Nanofluids," Journal of Nanopart Research Paper, 2010.
  14. F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th Edn., Wiley, New Jersey, 2002.
  15. J. C. Maxwell, A Treatise on Electricity and Magnetism, pp.360-366, Oxford : Clarendon Press, Oxfordshire, 1873.
  16. D. P. H. Hasselman and Lloyd F. Johnson, "Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance," Journal of Composite Materials, Vol.21, pp.508- 515, 1987. https://doi.org/10.1177/002199838702100602
  17. S. K. Das, N. Putra and W. Roetzel, "Pool Boiling Characteristics of Nano-fluids," International Journal of Heat and Mass Transfer, Vol.46, pp.851-862, 2003. https://doi.org/10.1016/S0017-9310(02)00348-4
  18. R. Prasher, D. Song and J. Wang, P. Phelan, "Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications," Applied Physics Letters 89, 133108, 2006. https://doi.org/10.1063/1.2356113
  19. N. Putra, W. Roetzel and S. K. Das, "Natural Convection of Nano-fluids," Heat and Mass Transfer, Vol.39, pp.775-784, 2003. https://doi.org/10.1007/s00231-002-0382-z
  20. H. L. Kwon and S. P. Jang, "Study on Thermal Conductivity and Viscosity of Distilled Water/ Commercial Coolant Based $Al_{2}O_{3}$ Nanofluids," Trans., 2010 Spring Annual Conference, KSME, pp.42-45, 2010.
  21. Y. Ding, H. Alias, D. Wen and R. A. Williams, "Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)," International Journal of Heat and Mass Transfer, Vol.49, pp.240-250, 2006. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009
  22. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, "Heat Transfer and Flow Behavior of Aqueous Suspensions of $TiO_{2}$ Nano Particles (nanofluids) Flowing Upward through a Vertical Pipe," International Journal of Heat and Mass Transfer, Vol.50, pp.2272-2281, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024
  23. K. Y. Kwak and C. Y. Kim, "Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol," Korea- Australia Rheology Journal, Vol.17, No.2, pp.35-40, 2005.
  24. H. Chen, W. Yang, Y. He, Y. Ding, L. A. A. Lapkin and D. V. Bavykin, "Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)," Powder Technology, Vol.183, pp.63-72, 2008. https://doi.org/10.1016/j.powtec.2007.11.014
  25. W. Yu, H. Xie, L. Chen and Y. Li, "Investigation of Thermal Conductivity and Viscosity of Ethylene Glycol Based ZnO Nanofluid," Thermochemical Acta, Vol.491, No.1-2, pp.92- 96, 2009. https://doi.org/10.1016/j.tca.2009.03.007
  26. H. Chen, Y. Ding and C. Tan, "Rheological Behaviour of Nanofluids," New Journal of Physics, Vol.9, p.367, 2007. https://doi.org/10.1088/1367-2630/9/10/367
  27. H. Chen, Y. Ding and A. Lapkin, "Rheological Behaviour of Nanofluids Containing Tube / Rod-like Nanoparticles," Powder Technology, Vol.194, pp.132-141, 2009. https://doi.org/10.1016/j.powtec.2009.03.038
  28. A. Einstein, "Eine Neue Bestimmung der Molekul," Annalen der Physik., Vol.19, Vol.2, pp.289-306, 1906.
  29. G. K. Batchelor, "Effect of Brownian-motion on Bulk Stress in a Suspension of Sphericalparticles," Journal of Fluid Mechanics, Vol.83, No.1, pp.97-117, 1977. https://doi.org/10.1017/S0022112077001062
  30. B. C. Pak and Y. I. Cho, "Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particle," Experimental Heat Transfer, Vol.11, pp.151-170, 1998. https://doi.org/10.1080/08916159808946559
  31. C. T. Nguyen, G. Roy, C. Gauthier and N. Galanis, "Heat Transfer Enhancement Using $Al_{2}O_{3}$-water Nanofluid for an Eletronic Cooling System," Applied Thermal Engineering, Vol.27, pp.1501-1506, 2007. https://doi.org/10.1016/j.applthermaleng.2006.09.028
  32. D. Kim, Y. Kwon, Y. Cho, C. Li, S. Cheong, Y. Hwang, J. Lee, D. Hong and S, Moon, "Convective Heat Transfer Characteristics of Nanofluids under Laminar and Turbulent Flow Conditions," Current Applied Physics, Vol.9, pp.119-123, 2004. https://doi.org/10.1016/j.cap.2008.12.047
  33. D. Wen and Y. Ding, "Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions," International Journal of Heat and Mass Transfer, Vol.47, pp.5181-5188, 2004. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
  34. K. B. Anoop, T. Sundararajan and S. K. Das, "Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region," International Journal of Heat and Mass Transfer, Vol.52, pp.2189-2195, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063
  35. K. S. Hwang, S. P. Jang and S. U. S. Choi, "Flow and Convective Heat Transfer Characteristics of Water-based $Al_{2}O_{3}$ Nanofluids in Fully Developed Laminar Flow Regime," International Journal of Heat and Mass Transfer, Vol.52, pp.193-199, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.032