DOI QR코드

DOI QR Code

Mutation of a putative S-nitrosylation site of TRPV4 protein facilitates the channel activates

  • Lee, Eun-Jeoung (Department of Pre-medicine, Eulji University School of Medicine) ;
  • Shin, Sung-Hwa (Department of Biology Education, Chungbuk National University) ;
  • Hyun, Sung-Hee (Department of Pre-medicine, Eulji University School of Medicine) ;
  • Chun, Jae-Sun (Department of Biology Education, Korea National University of Education) ;
  • Kang, Sang-Sun (Department of Biology Education, Chungbuk National University)
  • Received : 2010.09.08
  • Accepted : 2010.11.01
  • Published : 2011.06.30

Abstract

The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues. Nitric oxide (NO) as a gaseous signal mediator shows a variety of important biological effects. In many instances, NO has been shown to exhibit its activities via a protein S-nitrosylation mechanism in order to regulate its protein functions. With functional assays via site-directed mutagenesis, we demonstrate herein that NO induces the S-nitrosylation of TRPV4 $Ca^{2+}$ channel on the $Cys^{853}$ residue, and the S-nitrosylation of $Cys^{853}$ reduced its channel sensitivity to 4-${\alpha}$ phorbol 12,13-didecanoate and the interaction between TRPV4 and calmodulin. A patch clamp experiment and $Ca^{2+}$ image analysis show that the S-nitrosylation of $Cys^{853}$ modulates the TRPV4 channel as an inhibitor. Thus, our data suggest a novel regulatory mechanism of TRPV4 via NO-mediated S-nitrosylation on its $Cys^{853}$ residue.

Keywords

References

  1. Andrade YN, Fernandes J, VJ, an E, Fernandez-Fernandez JM, Arninges M, S,inge TM, Villales M, Valverde MA. 2005. TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. J Cell Biol. 168: 869-874. https://doi.org/10.1083/jcb.200409070
  2. Asada K, Kurokawa J, Furukawa T. 2009. Redox- and calmodulin-dependent S-nitrosylation of the KCNQ1 channel. J Biol Chem 27:6014-6020.
  3. Becker D, Blase C, Bereiter-Hahn J, Jendrach M. 2005. TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 118:2435-2440. https://doi.org/10.1242/jcs.02372
  4. Birder L, Kullmann FA, Lee H, Barrick S, GroatWde, Kanai A, Caterina M. 2007. Activation of urothelial transient receptor potential vanilloid 4 by 4alpha-phorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J Pharmacol Exp Ther. 323: 227-235. https://doi.org/10.1124/jpet.107.125435
  5. Choi YB, Tenneti L, Le DA, Ortiz J, Bai G, Chen HS, Lipton SA. 2000. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 3:15-21. https://doi.org/10.1038/71090
  6. Cohen DM. 2006. Regulation of TRP channels by N-linked glycosylation. Semin Cell Dev Biol 17:630-637. https://doi.org/10.1016/j.semcdb.2006.11.007
  7. Cuajungco MP, Grimm C, Oshima K, D'hoedt D, Nilius B, Mensenkamp AR, Bindels RJ, Plomann M, Heller S. 2006. PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 281:18753-18762. https://doi.org/10.1074/jbc.M602452200
  8. Earley S, Heppner TJ, Nelson MT, Brayden JE. 2005. TRPV4 forms a novel Ca2 signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270-1279. https://doi.org/10.1161/01.RES.0000194321.60300.d6
  9. Everaerts W, Nilius B, Owsianik G. 2009. The vallinoid transient receptor potential channel Trpv4: From structure to disease. Prog Biophys Mol Biol. 1:1-25.
  10. Fan HC, Zhang X, McNaughton PA. 2009. Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284:27884-27891. https://doi.org/10.1074/jbc.M109.028803
  11. Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernandez-Fernandez JM, Valverde MA. 2008. IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5'-6'-epoxyeicosatrienoic acid. J Cell Biol 181:143-155. https://doi.org/10.1083/jcb.200712058
  12. Fu Y, Subramanya A, Rozansky D, Cohen DM. 2006. WNK kinases influence TRPV4 channel function and localization. Am J Physiol Renal Physiol. 290:1305-1314. https://doi.org/10.1152/ajprenal.00391.2005
  13. Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Tu HC, Kim H, Cheng EH, Tjandra N, Walensky LD. 2008. BAX activation is initiated at a novel interaction site. Nature 455:1076-1081. https://doi.org/10.1038/nature07396
  14. Haendeler J, Hoffmann J, Zeiher AM, Dimmeler S. 2004. Antioxidant effects of statins via S-nitrosylation and activation of thioredoxin in endothelial cells: a novel vasculoprotective function of statins. Circulation 110:856-61. https://doi.org/10.1161/01.CIR.0000138743.09012.93
  15. Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D'Acquisto F, Addeo R, Makuuchi M, Esumi H. 2000. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood. 95:189-197.
  16. Lipton SA. 2007. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets. 8:621-632. https://doi.org/10.2174/138945007780618472
  17. Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A. 2009. TRPV1 and TRPA1 mediate peripheral nitric oxideinduced nociception in mice. PLoS One. 4: e7596. https://doi.org/10.1371/journal.pone.0007596
  18. Muramatsu S, Wakabayashi M, Ohno T, Amano K, Ooishi R, Sugahara T, Shiojiri S, Tashiro K, Suzuki Y, Nishimura R, et al. 2007. Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem. 282:32158-32167. https://doi.org/10.1074/jbc.M706158200
  19. Nilius B, Watanabe H, Vriens J. 2003. The TRPV4 channel: structure-function relationship and promiscuous gating behavior. Pflugers Arch. 446:298-303. https://doi.org/10.1007/s00424-003-1028-9
  20. Olson SY, Garban HJ. 2008. Regulation of apoptosis-related genes by nitric oxide in cancer. [Review]. Nitric Oxide. 19:170-176. https://doi.org/10.1016/j.niox.2008.04.005
  21. Robertson RM, Sillar KT. 2009. The nitric Oxide/cGMP pathway tunes the thermosensitivity of swimming motor patterns in Xenopuslaevis tadpoles. J Neurosci. 29:13945-13951. https://doi.org/10.1523/JNEUROSCI.3841-09.2009
  22. Strotmann R, Schultz G, Planpt TD. 2003. Ca2+-dependent potentiation of thenonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem. 278:26541-26549. https://doi.org/10.1074/jbc.M302590200
  23. Sun J, Xin C, Eu JP, Stamler JS, Meissner G. 2001. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A. 98:11158-11162. https://doi.org/10.1073/pnas.201289098
  24. Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E 2007. Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res. 101:1155-1163. https://doi.org/10.1161/CIRCRESAHA.107.155879
  25. Suzuki M, Mizuno A, Kodaira K, Imai M. 2003a. Impaired pressure sensation in mice lacking TRPV4. J Biol Chem. 278:22664-22668. https://doi.org/10.1074/jbc.M302561200
  26. Suzuki M, Hirao A, Mizuno A. 2003b. Microtubule-associated [corrected] protein 7 increases the membrane expression of transient receptor potential vanilloid 4 (TRPV4). J Biol Chem. 278:51448-51453. https://doi.org/10.1074/jbc.M308212200
  27. Teixeira CC, Agoston H, Beier F. 2008. Nitric oxide, C-type natriuretic peptide and cGMP as regulators of endochondral ossification. [Review] Dev Biol. 319:171-178. https://doi.org/10.1016/j.ydbio.2008.04.031
  28. Vennekens R, Owsianik G, Nilius B. 2008. Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des. 14:18-31. https://doi.org/10.2174/138161208783330763
  29. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, et al. 2002. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem. 277:13569-13577. https://doi.org/10.1074/jbc.M200062200
  30. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. 2003. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 424:434-438. https://doi.org/10.1038/nature01807
  31. Wegierski T, Lewandrowski U, Muller B, Sickmann A, Walz G. 2009. Tyrosin phosphorylation modulates the activity of TRPV4 in response to defined stimuli. J Biol Chem. 284:2923-2933. https://doi.org/10.1074/jbc.M805357200
  32. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y. 2006. Nitric oxide activates TRP channels by cysteine Snitryosylation. Nat Chem. Biol 2:596-607. https://doi.org/10.1038/nchembio821

Cited by

  1. The nuclear localization of glycogen synthase kinase 3β is required its putative PY-nuclear localization sequences vol.34, pp.4, 2011, https://doi.org/10.1007/s10059-012-0167-2
  2. Endoplasmic Reticulum (ER) Stress Enhances Tip60 (A Histone Acetyltransferase) Binding to the Concanavalin A vol.6, pp.None, 2012, https://doi.org/10.2174/1874091x01206010001
  3. Human skeletal dysplasia caused by a constitutive activated transient receptor potential vanilloid 4 (TRPV4) cation channel mutation vol.44, pp.12, 2012, https://doi.org/10.3858/emm.2012.44.12.080
  4. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca 2+ signaling vol.9, pp.None, 2011, https://doi.org/10.3389/fncel.2015.00059
  5. TRPV4: Molecular Conductor of a Diverse Orchestra vol.96, pp.3, 2016, https://doi.org/10.1152/physrev.00016.2015
  6. Transient Receptor Potential Vanilloid 4 and Serum Glucocorticoid–regulated Kinase 1 Are Critical Mediators of Lung Injury in Overventilated Mice In Vivo vol.126, pp.2, 2011, https://doi.org/10.1097/aln.0000000000001443
  7. Dual contribution of TRPV4 antagonism in the regulatory effect of vasoinhibins on blood-retinal barrier permeability: diabetic milieu makes a difference vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-13621-8