DOI QR코드

DOI QR Code

The Promotion of Cell Attachment and Proliferation on Silk Fibroin

실크 생체막에 대한 세포 부착 및 세포 증식

  • Jo, You-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kweon, Hae-Yong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Nam, Sung-Hee (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Heui-Sam (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Yeo, Joo-Hong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • 조유영 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 권해용 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 이광길 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 남성희 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 이희삼 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 여주홍 (농촌진흥청 국립농업과학원 잠사양봉소재과)
  • Received : 2011.05.18
  • Accepted : 2011.06.14
  • Published : 2011.09.30

Abstract

Silk fibroin, a natural protein produced by silkworm, is a good biomaterial which has biodegradability and biocompatibility. To ascertain the effects of silk fibroin on cell growth, silk fibroin films were prepared using silk fibroin aqueous solutions of various concentrations. We investigated the attachment, proliferation, morphology of the cells and the expression levels of genes related to cell attachment and growth on the silk fibroin films. When the cells were cultured on the 0.1 and 1% silk fibroin film, the cell adhesion ability was very excellent. Particularly, overall cell growth on the 1% silk fibroin film was definitely superior to the others. Also, expression levels of genes related cell growth were increased on the 0.1 and 1% silk fibroin film. These results suggest silk as a material for medical applications.

실크 피브로인은 누에로부터 생산되는 천연단백질로서 생분해성과 생체적합성을 가지고 있어 생체재료로 사용하기에 적합한 물질이다. 본 연구에서는 이러한 실크 피브로인이 세포 생장에 미치는 영향을 확인하기 위해서, 다양한 농도의 실크 피브로인 용액을 만들고 이를 이용하여 실크 피브로인 필름을 제작하였다. 제작된 실크 필름에서 세포를 배양한 후 세포부착과 증식 능력, 형태등을 관찰하였으며, 세포 부착과 생장관련 유전자의 발현을 분석하였다. 그 결과 0.1과 1% 실크 피브로인 필름에서 배양한 세포가 세포 부착능력이 가장 우수했으며, 특히 1% 필름에서 자란 세포의 경우 다른 농도의 필름에서 보다 그 생장이 매우 좋았다. 또한 세포 생장과 관련된 유전자의 발현 수준은 0.1과 1% 실크 피브로인 필름에서 증가됨을 확인 할 수 있었다. 이러한 결과는 실크를 이용하여 다양한 용도의 의료용 소재로 사용하는데 있어 기존의 다른 생체막을 대체할 수 있을 뿐 아니라, 실크 생체막의 사용으로 결손된 부위에 대한 빠른 치유효과 또한 기대할 수 있을 것이라 생각된다.

Keywords

References

  1. Fraser RD, MacRae TP, and Stewart FH (1966) Poly-l-alanylglycyl-lanalylglycyl- l-serylglycine: a model for the crystalline regions of silk fibroin. J Mol Biol 19, 580-582. https://doi.org/10.1016/S0022-2836(66)80026-8
  2. Horan RL, Antle K, Collette AL, Wang YZ, Huang J, Moreau JE, Volloch V, Kaplan DL, and Altman GH (2005) In vitro degradation of silk fibroin. Biomaterials 26, 3385-3393. https://doi.org/10.1016/j.biomaterials.2004.09.020
  3. Hynes RO (1990) In Fibronectins. Springer-Verlag, New York, NY
  4. Jensen LT and Host NB (1997) Collagen: Scaffold for repair or execution. Cardiovascular Research 33, 535-539. https://doi.org/10.1016/S0008-6363(96)00247-7
  5. Kenyon NJ, Ward RW, McGrew G, and Last JA (2003) TGF-b1 causes airway fibrosis and increased collagen I and III mRNA in mice. Thrax 58, 772-777. https://doi.org/10.1136/thorax.58.9.772
  6. Kim UJ, Park J, Kim HJ, Wada M, and Kaplan DL (2005) Threedemensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26, 2775-2785. https://doi.org/10.1016/j.biomaterials.2004.07.044
  7. Kweon HY, Ha HC, Um IC, and Park YH (2001) Physical properties of silk fibroin/chitosan blend films. J Appl Plym Sci 80, 928-934. https://doi.org/10.1002/app.1172
  8. Lammli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  9. Lucas F, Shaw JTB, and Smith SG (1957) The amino acid sequence in a fraction of the fibroin of Bombyx mori. Biochem J 66, 468-479.
  10. Lv Q, Cao C, Zhang Y, Man X, and Zhu H (2004) The preparation of insoluble fibroin films induced by degummed fibroin or fibroin microspheres. J Mater Sci Mater Med 15, 1193-1197. https://doi.org/10.1007/s10856-004-5918-y
  11. Lyon M, Rushton G, Askari JA, Humphries MJ, and Gallagher JT (2000) Elucidation of the Structural Features of Heparan Sulfate, Important for Interaction with the Hep-2 Domain of Fibronectin. J Biol Chem 275, 4599-4606. https://doi.org/10.1074/jbc.275.7.4599
  12. Minoura N, Tsukada M, and Nagura M (1990) Fine structure and oxygen permeability of silk fibroin membrane treated with methanol. Polymer 31, 265-269. https://doi.org/10.1016/0032-3861(90)90117-H
  13. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  14. Moy RL, Lee A, and Zalka A (1991) Commonly used suture materials in skin surgery. Am Fam Physician 44, 2123-2128.
  15. Pankov R and Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115, 3861-3863. https://doi.org/10.1242/jcs.00059
  16. Santin M, Motta A, Freddi G, and Cannas M (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 46, 382-389. https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
  17. Sofia S, McCarthy MB, Gronowicz G, and Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54, 139-148. https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
  18. Sun M, Zhou P, Pan LF, Liu S, and Yang HX (2009) Enhanced cell affinity of the silk fibroin-modified PHBHHx material. J Mater Sci Mater Med 20, 1743-1751. https://doi.org/10.1007/s10856-009-3739-8
  19. Yeo JH, Lee KG, Kim HC, Oh HYL, Kim AJ, and Kim SY (2000) The effects of Pva/chitosan/fibroin (PCF)-blended spongy sheets on wound healing in rats. Biol Pharm Bull 10, 1220-1223.
  20. Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, and Yang T (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28, 2413-2419. https://doi.org/10.1093/nar/28.12.2413

Cited by

  1. Manufacture and Characterization of Silkworm Gland Hydrolysate vol.50, pp.2, 2012, https://doi.org/10.7852/jses.2012.50.2.76
  2. Development of functional cosmetic powder using silkgland powder of silkworm vol.51, pp.1, 2013, https://doi.org/10.7852/jses.2013.51.1.41