차량 배터리 센서용 Analog Front-End IC 설계

Analog Front-End IC for Automotive Battery Sensor

  • Yeo, Jae-Jin (Dep. of Electronic, Electrical, Control and Instrumentation Engineering, Hanyang Univ.) ;
  • Jeong, Bong-Yong (Dep. of Electronic, Electrical, Control and Instrumentation Engineering, Hanyang Univ.) ;
  • Roh, Jeong-Jin (Dep. of Electronic, Electrical, Control and Instrumentation Engineering, Hanyang Univ.)
  • 투고 : 2011.06.30
  • 심사 : 2011.10.10
  • 발행 : 2011.10.25

초록

본 논문에서는 배터리의 전류, 전압을 측정하기 위한 analog front-end IC 를 설계 하였다. 회로는 크게 programmable gain instrumentation amplifier (PGIA)와 델타-시그마 모듈레이터로 구성 되어 있다. 델타-시그마 모듈레이터는 2차 단일 비트 구조이고 0.25 ${\mu}m$ CMOS 공정을 사용 하였다. 설계된 회로는 오버 샘플링 비율이 256일 때 2 kHz 신호 대역에서 signal-to-noise ratio (SNR)는 82 dB 의 성능을 가지고, differential nonlinearity (DNL)은 ${\pm}$ 0.3 LSB (16bit 기준), integral nonlinearity (INL)은 ${\pm}$ 0.5 LSB 이다. 전체 소비 전력은 4.5 mW 이다.

This paper presents the design of the battery sensor IC for instrumentation of current, voltage using delta-sigma ADC. The proposed circuit consists of programmable gain instrumentation amplifier (PGIA) and second-order discrete-time delta-sigma modulator with 1-bit quantization were fabricated by a 0.25 ${\mu}m$ CMOS technology. Design circuit show that the modulator achieves 82 dB signal-to-noise ratio (SNR) over a 2 kHz signal bandwidth with an oversampling ratio (OSR) of 256 and differential nonlinearity (DNL) of ${\pm}$ 0.3 LSB, integral nonlinearity (INL) of ${\pm}$ 0.5 LSB. Power consumption is 4.5 mW.

키워드

참고문헌

  1. 김경연, "전기자동차가 몰고올 변화의 물결," LG Business Insight, 2009. 11.
  2. 전진용, 강희경, 이현동, "친환경 자동차용 BMS ECU 개발," 한국자동차공학회 Annual Conf., 2009, pp. 2928-2933.
  3. http://www.mitsubishi-motors.com
  4. 박현석, 구본웅, 엄태홍, 최후락, 최창율, "하이브리드 전기자동차의 BMS ECU 개발 및 모니터링," 한국자동차공학회 Symp., 2005, pp. 38-42.
  5. A. Gerosa, A. Novo and A. Neviani, "An Analog Front End for the Acquisition of Biomedical Signals Fully Integrated in a $0.8{\mu}m$ CMOS Process," in Southwest Symp. Mixed-Signal Design, Feb. 2001, pp. 152-157.
  6. R. J. Baker, W. L. Harry and E. B. David, CMOS Circuit Design, Layout, and Simulation, NY: IEEE Press, 1997.
  7. ADuC7034 Data Sheet, Analog Devices Inc. (2010, May). [On-line]. Available: http://www.analog.com
  8. O. Tremblay, L. A. Dessaint, and A. I. Dekkiche, "A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles," IEEE Vehicle Power and Propulsion Conf., Sep. 2007, pp. 284-289.
  9. A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th ed. New York: Oxford Press, 2004, pp. 85-88.
  10. V. Schaffer and M. F. Snoeij "A 36V Programmable Instrumentation Amplifier with $sub-20{\mu}V$ offset and a CMRR in excess of 120dB at all gain settings," IEEE Journal of Solid-State Circuits, vol. 44, no. 7, July 2009.
  11. C. C. Hsu and J. T. Wu, "A Highly Linear 125-MHz CMOS Switched-Resistor Programmable-Gain Amplifier," IEEE Journal of Solid-State Circuits, vol. 38, no. 10, Oct. 2003.
  12. H.-K. Yang and E. I. El-Masry, "Double sampling Delta-Sigma Modulators," IEEE Trans. Circuits Syst. II, vol. 43, pp. 524-529, July 1996. https://doi.org/10.1109/82.508429
  13. P. J. Hurst and W. J. McIntyre, "Double Sampling in Switched-capacitor Delta-Sigma A/D Converters," in IEEE Int. Symp. Circuits and Syst., May 1990, pp. 902-905.
  14. W. Kester, The Data Conversion Handbook, Analog Devices, Inc., 2005, pp. 303-316.