Fabrication Process of Single-walled Carbon Nanotube Sensors Aligned by a Simple Self-assembly Technique

간단한 자기 조립 기법으로 배열된 단일벽 탄소 나노 튜브 센서의 제작공정

  • Kim, Kyeong-Heon (Photonics/Sensor System Center, Robotics/ Systems Division, Korea Institute of Science and Technology) ;
  • Kim, Sun-Ho (Photonics/Sensor System Center, Robotics/ Systems Division, Korea Institute of Science and Technology) ;
  • Byun, Young-Tae (Photonics/Sensor System Center, Robotics/ Systems Division, Korea Institute of Science and Technology)
  • 김경헌 (한국과학기술연구원, 로봇/시스템연구본부, 포토닉스/센서시스템센터) ;
  • 김선호 (한국과학기술연구원, 로봇/시스템연구본부, 포토닉스/센서시스템센터) ;
  • 변영태 (한국과학기술연구원, 로봇/시스템연구본부, 포토닉스/센서시스템센터)
  • Received : 2010.10.22
  • Accepted : 2011.03.08
  • Published : 2011.03.25

Abstract

In previous reports, we investigated a selective assembly method of fabricating single-walled carbon nanotubes (SWCNTs) on a silicon-dioxide ($SiO_2$) surface by using only a photolithographic process. In this paper, we have fabricated field effect transistors (FETs) with SWCNT channels by using the technique mentioned above. Also, we have electrically measured gating effects of these FETs under different source-drain voltages ($V_{SD}$). These FETs have been fabricated for sensor applications. Photoresist (PR) patterns have been made on a $SiO_2$-grown silicon (Si) substrate by using a photolithographic process. This PR-patterned substrate have been dipped into a SWCNT solution dispersed in dichlorobenzene (DCB). These PR patterns have been removed by using aceton. As a result, a selectively-assembled SWCNT channels in FET arrays have been obtained between source and drain electrodes. Finally, we have successfully fabricated 4 FET arrays based on SWCNT-channels by using our simple self-assembly technique.

이전 보고에서 우리는 오직 포토리소그래피(photolithography) 공정만을 이용하여 단일벽 탄소 나노튜브 (single-walled carbon nanotube; SWCNT)를 산화막 (silicon-dioxide; $SiO_2$)이 형성된 실리콘 (silicon; Si) 기판위에 선택적으로 흡착시키는 공정 방법에 대해 조사했었다. 본 논문에서, 우리는 위에서 설명한 기법을 이용하여 단일벽 탄소 나노튜브 채널을 가진 전계효과 트랜지스터 (field emission transistor; FET)를 제작하였다. 또한, 제작된 단일벽 탄소 나노튜브 기반 전계효과 트랜지스터 소자의 게이트 전압에 따른 전류 전압특성이 조사되었다. 이 전계효과 트랜지스터는 센서로서 작동될 수 있다. 포토리소그래피 공정에 의해 열산화막이 형성된 실리콘 기판 표면위에 단일벽 탄소 나노튜브가 흡착될 부분(채널부분)의 포토레지스트가 노출되도록 포토레지스트 패턴이 형성된다. 이 포토레지스트 패턴이 형성된 기판은 단일벽 탄소 나노튜브가 분산된 다이클로로벤젠 (dichlorobenzene; DCB) 용액 속에 담가진다. 남아 있는 포토레지스트 패턴이 아세톤에 의해 제거 되면, 결과적으로 채널부분 (소오스와 드레인 전극사이) 에 선택적으로 단일벽 탄소 나노튜브 채널이 형성된다. 이 간단한 가기 조립 기술이 이용됨으로써 우리는 단일벽 탄소 나노튜브 채널을 가진 4개의 전계효과 트랜지스터 어레이를 성공적으로 제작하였다.

Keywords

References

  1. S. Iijima, "Helical microtubules of graphitic carbon," Nature, Vol. 354, no. 6348, pp. 56 - 58, November 1991. https://doi.org/10.1038/354056a0
  2. A. Thess, et al., "Crystalline Ropes of Metallic Carbon Nanotubes," Science, Vol. 273, no. 5274, pp. 483-487, July 1996. https://doi.org/10.1126/science.273.5274.483
  3. S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-temperature transistor based on a single carbon nanotube," Nature, Vol 393, no.6680, pp. 49-52, May 1998. https://doi.org/10.1038/29954
  4. S. Ghosh, A. K. Sood, and N. Kumar, "Carbon Nanotube Flow Sensors," Science, Vol. 299, no. 5609, pp. 1042-1044, February 2003 https://doi.org/10.1126/science.1079080
  5. P. W. Barone, S.Baik, D. A. Heller, and M. S. Strano, "Near-infrared optical sensors based on single-walled carbon nanotubes" Nature Materials, Vol. 4, no. 1, pp. 86-92, 2005. https://doi.org/10.1038/nmat1276
  6. R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, "Single- and multi-wall carbon nanotube field-effect transistors," Applied Physics Letters, Vol. 73, no. 17, pp. 2447-2449, October 1998. https://doi.org/10.1063/1.122477
  7. J. Li, "The cyranose chemical vapor analyzer," Sensors, Vol. 17, no. 8, pp. 56-60, August 2000.
  8. Y. Lu, C. Partridge, M. Meyyappan, and J. Li, "A Carbon Nanotube Seneor Array for Sensitive Gas Discrimination Using principal Component Analysis," Journal of Electroanalytical Chemistry, Vol 593, no. 1-2, pp. 105-110, August 2006. https://doi.org/10.1016/j.jelechem.2006.03.056
  9. N. Sinha, J. Ma, and J. T.W. Yeow, "Carbon Nanotube Based Sensors," Journal of Nanoscience and Nanotechnology, Vol. 6, no. 3, pp. 573-590, March 2006. https://doi.org/10.1166/jnn.2006.121
  10. P. Young, Y. Lu, R. Terrill, and J. Li, "High-Sensitivity NO2 Detection with Carbon Nanotube-Gold Nanoparticle Composite Films," Journal of Nanoscience and Nanotechnology, Vol. 5, no. 9, pp. 1509-1513, September 2005. https://doi.org/10.1166/jnn.2005.323
  11. E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, "Random networks of carbon nanotubes as an electronic material," Applied Physics Letters, Vol. 82, no. 13, pp. 2145-2147, March 2003. https://doi.org/10.1063/1.1564291
  12. Y. Huang, X. Duan, Q. Wei, and C.M. Lieber, "Directed Assembly of One-Dimensional Nanostructures into Functional Networks," Science, Vol. 291, no. 5504, pp. 630-633, January 2001. https://doi.org/10.1126/science.291.5504.630
  13. R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Lohneysen, "Simultaneous Deposition of Metallic Bundles of Single-walled Carbon Nanotubes Using Ac-dielectrophoresis," Nano Letters, Vol. 3, no. 8, pp. 1019-1023, August 2003. https://doi.org/10.1021/nl0342343
  14. S. J. Oh, J. Zhang, Y. Cheng, H. Shimoda, and O. Zhou, "Liquid-phase fabrication of patterned carbon nanotube field emission cathodes," Applied Physics Letters, Vol. 84, no. 19, 3738-3740, April 2004. https://doi.org/10.1063/1.1737074
  15. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, and H. Dai "Electric-field-directed growth of aligned single-walled carbon nanotubes," Applied Physics Letters, Vol. 79, no. 19, pp. 3155-3157, November 2001. https://doi.org/10.1063/1.1415412
  16. J Gao, A Yu, ME Itkis, E Bekyarova, B Zhao, S Niyogi, RC. Haddon, "Large-Scale Fabrication of Aligned Single-Walled Carbon Nanotube Array and Hierarchical Single-Walled Carbon Nanotube Assembly," J. Am. Chem. Soc., Vol. 126, no. 51, pp. 16698-16699, December 2004. https://doi.org/10.1021/ja044499z
  17. J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert and R. E. Smalley, "Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates," Chemical Physics Letters, Vol. 303, no. 1-2, pp. 125-129, April 1999. https://doi.org/10.1016/S0009-2614(99)00209-2
  18. S. G. Rao, L. Huang, W. Setyawan, and S. Hong, "Nanotube electronics: Large-scale assembly of carbon nanotubes," Nature 425, pp. 36-37, September 2003. https://doi.org/10.1038/425036a
  19. V. V. Tsukruk, H. Ko, and S. Peleshanko, "Nanotube Surface Arrays: Weaving, Bending, and Assembling on Patterned Silicon," Physical Review Letters, Vol. 92, no. 6, 065502, February 2004. https://doi.org/10.1103/PhysRevLett.92.065502
  20. N. Nuraje, I. A. Banerjee, R. I. MacCuspie, L. Yu, and H. Matsui, "Biological Bottom-Up Assembly of Antibody Nanotubes on Patterned Antigen Arrays," J. Am. Chem. Soc. Vol. 126, no. 26, pp. 8088-8089, July 2004. https://doi.org/10.1021/ja048617u
  21. C. Zhou, J. Kong, E. Yenilmez, and H. Dai, "Modulated Chemical Doping of Individual Carbon Nanotubes," Vol. 290, no. 5496, pp. 1552-1555, November 2000. https://doi.org/10.1126/science.290.5496.1552
  22. M. D. Lay, J. P. Novak, and E. S. Snow, "Simple Route to Large-Scale Ordered Arrays of Liquid-Deposited Carbon Nanotubes," Nano Letter, Vol. 4 no. 4, pp. 603-606, March 2004. https://doi.org/10.1021/nl035233d
  23. M. Lee, J. Im, B. Y. Lee, S. Myung, J. Kang, L. Huang, Y.-K. Kwon, and S. Hong, "Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires," Nature Nanotechnology Vol 1, pp. 66 - 71 October 2006. https://doi.org/10.1038/nnano.2006.46
  24. K. H. Kim, T. G. Kim, S. Lee, Y. M. Jhon, S. H. Kim, and Y. T. Byun, "Selectively self-assembled single-walled carbon nanotubes using only photolithography without additional chemical process," 30th International Conference on the Physics of Semiconductors, p. 913, Seoul, Korea, July 2010.