무선 센서 네트워크에서 동적 히스테리시스 특성을 이용한 이동 노드의 가입 방법

Method for Joining Mobile Nodes in Wireless Sensor Networks using Dynamic Hysteresis

  • 이재형 (금오공과대학교 전자공학부) ;
  • 이응수 (금오공과대학교 전자공학부) ;
  • 김동성 (금오공과대학교 전자공학부)
  • Lee, Jae-Hyung (School of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Lee, Eung-Soo (School of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Kim, Dong-Sung (School of Electronic Engineering, Kumoh National Institute of Technology)
  • 투고 : 2011.04.13
  • 심사 : 2011.06.27
  • 발행 : 2011.07.25

초록

본 논문에서는 무선 네트워크 환경에서 히스테리시스 특성을 이용한 이동 노드의 네트워크 가입 방법을 제안한다. 제안된 방법은 정적 히스테리시스 특성을 이용하여 이동 노드가 네트워크 전송 경계점에 위치했을 때 빈번히 가입과 탈퇴를 하게 되는 문제점을 해결한다. 그에 따라, 네트워크 가입 요청에 따른 주변 노드들의 응답 패킷을 줄여 에너지 소비를 효율적으로 관리 할 수 있다. 하지만 정적 히스테리시스 방법은 네트워크의 가입률을 감소시키게 된다. 이러한 문제점을 해결하기 위해 동적 히스테리시스 방법을 적용하여 가입률을 향상시킨다. 제안된 방법의 효용성을 증명하기 위해서 히스테리시스 모델들을 적용한 네트워크 가입 방법을 구현하여 이동 노드의 경로에 따라 효율적으로 네트워크 가입됨을 보였다.

In this paper, we propose a method for joining mobile nodes in wireless sensor networks using hysteresis features. It is possible to use static hysteresis, whereby joining and withdrawal are carried out repeatedly when a mobile node is located at boundary points. The energy consumption of the nodes can be effectively managed by a decrease in the response packets of the neighbors under the joining requests of the mobile nodes. However, static hysteresis causes a decrease in the joining rate. In order to increase the joining rate, dynamic hysteresis is used. To evaluate the performance of the proposed technique, the joining rate is investigated and analyzed. Simulation results show that the proposed method enables efficient joining according to the mobility of nodes in wireless sensor networks.

키워드

참고문헌

  1. A. Willig, "Recent and emerging topics in wireless industrial communications: A selection," IEEE Transactions on Industrial Informatics, Vol. 4, pp. 102-124, 2008.
  2. F. De Pellegrini, D. Miorandi, S. Vitturi, and A. Zanella, "On the use of wireless networks at low level of factory automation systems", IEEE Transactions on Industrial Informatics, Vol. 2, pp. 129-143, 2006. https://doi.org/10.1109/TII.2006.872960
  3. J. Yick, B. Mukherjee, and D. Ghosal, "Wireless Sensor Network Survey", Computer Networks, Elsevier Science, Vol. 52, pp. 2292-2330, 2009.
  4. 김동성, 이정일, "실시간 혼합 트래픽 전송을 위한 산업용 IEEE 802.15.4 망의 체계적 전송 기법," 대한전자공학회논문지, 제45권, CI편, 제6호, 18-26쪽, 2008년.
  5. Oka, A., Lampe, L., "Data extraction from wireless sensor networks using distributed fountain codes," IEEE Transactions on Communications, Vol, 57, pp. 2607-2618, 2009. https://doi.org/10.1109/TCOMM.2009.080143
  6. Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal, "Wireless Sensor Network Survey," Computer Networks, Elsevier Science, Vol. 52, pp. 2292-2330, 2009.
  7. 이재형, 이응수, 김동성, "센서 네트워크의 이동 노드를 위한 효율적 네트워크 구성 방법," 대한전자공학회논문지, 제47권, CI편, 제6호, 655-665쪽, 2010년.
  8. Caimu Tang and We, D.O., "An Efficient Mobile Authentication Scheme for Wireless Networks," IEEE Transactions on Wireless Communications, Vol. 7, pp. 1408-1416, 2010.
  9. D. Johnson, C. Perkins, J. Arkko (2005). Mobility Support in IPv6. IETF RFC 3755.
  10. WiMAX Forum, "WiMAX System Evaluation Methodology V2.1," Jul. 2008. Available at web: http://www.wimaxforum.org/technology/documents
  11. Carpenter, K.H. "A differential equation approach to minor loops in the Jiles-Atherton hysteresis model," IEEE Transactions on Magnetics, Vol. 27, pp. 4404-4406, 2002.
  12. R, Venkataraman, P.S. Krishnaprasad, "Approximate inverse of hysteresis : theory and numerical results", In proceeding of the 39th IEEE Conference on Decision and control, pp. 1-10, Jan. 2000.
  13. I.-T. Hwang, T.-W. Jang, M.-G Kang, S.-M. No, J.-Y. Son, D.-S. Hong, and C.-G. Kang, "Performance analysis of adaptive modulation and coding combined with transmit diversity in next generation mobile communication systems," Future Generation Computer Systems, Elsevier Science, Vol. 20, No. 2, pp. 189-196, 2004. https://doi.org/10.1016/S0167-739X(03)00133-X
  14. H.-J. Lee, D.-W. Kim, B.-C. Chung, and H.-S. Yoon, "QoS-Oriented Intersystem Handover Between IEEE 802.11b and Overlay Networks," IEEE Transactions on Vehicular Technology, Vol. 57, pp.1142-1154, 2008. https://doi.org/10.1109/TVT.2007.906347
  15. Garmonov, A.V., S.-H. Cheon, D.-H. Yim, K.-T. Han, Y.-S. Park, Savinkov, A.Y., Filin, S.A., Moiseev, S.N., and Kondakov, M.S., "Adaptive Hysteresis Using Mobility Correlation for Fast Handover," IEEE Communications Letters, Vol. 12, pp. 152-154, 2008. https://doi.org/10.1109/LCOMM.2008.071316
  16. Marichamy, P. and Chakrabarti, S. "On threshold setting and hysteresis issues of handoff algorithms," In proceeding of the IEEE Pervasive Computing and Communications, pp. 436-440, 1999.
  17. Cruz-Perez, F.A., Seguin-Jimenez, A., and Ortigoza-Guerrero, L., "Effects of handoff margins and shadowing on the residence time in cellular systems with link adaptation", IEEE Transaction on Vehicular Technology, Vol. 5pp. 3409-3413, 2004.
  18. Shyam Lal and Panwar, D.K., "Coverage Analysis of Handoff Algorithm with Adaptive Hysteresis Margin", In proceeding of the Information Technology, pp. 133-138, 2007.
  19. Nan Feng, "Joint Network-Centric and User-Centric Radio Resource Management in a Multicell System," IEEE Transaction on Communication, Vol. 50, No. 7, pp, 1114-1118, Jul. 2005.
  20. S.-J. Yoo, D. Cypher, and N. Golmie, "Predictive link trigger mechanism for seamless handovers in heterogeneous wireless networks," Wireless Communications and Mobile Computing, Vol. 9, No. 5, pp. 685-703, 2009. https://doi.org/10.1002/wcm.620
  21. Kuge, T. Ohno, K, and Itami, M, "An analysis of performance degradation caused by hidden terminal and its improvement in Inter-Vehicle communication," In proceeding of the Intelligent Transport Systems Telecommunications (ITST'09), pp. 482-485, Oct. 2009.
  22. Texas Instrument. CC2420 Data Sheet. Available at web:http://www.ti.com/lit/gpn/cc2420
  23. IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirement part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs), IEEE Std 802.15.4a-2007(Amendment to IEEE Std 802.15.4-2006), 2007.
  24. A.Woo, T. Tong, and D. Culler, "Taming the underlying challenges of reliable multihop routing in sensor networks," In proceeding ACM Sensys, pp. 14-27, Nov. 2003.