DOI QR코드

DOI QR Code

Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films

  • Basavaraja, C. (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Kim, Dae-Gun (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Kim, Won-Jeong (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Kim, Ji-Hyun (Department of Chemical and Bio-Engineering, Kyungwon University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Basic Science, Inje University)
  • Received : 2010.11.26
  • Accepted : 2011.01.12
  • Published : 2011.03.20

Abstract

Conducting polyaniline-poly($\varepsilon$-caprolactone) polymer composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of poly($\varepsilon$-caprolactone) (PCL) (10%, 20%, 30%, 40%, and 50%), the oxidative polymerization of aniline was achieved using ammonium persulfate as an oxidant. FTIR, UV-vis spectra, and X-ray diffraction studies support a strong interaction between polyaniline (PANI) and PCL. Structural morphology of the PANI-PCL polymer composites was studied using scanned electron microscopy (SEM) and transmittance electron microscopy (TEM), and thermal stability was analyzed by thermogravimetric analysis (TGA) technique. The temperature-dependent DC conductivity of PANI-PCL polymer composite films was studied in the range of 305-475 K, which revealed a semiconducting behavior in the transport properties of the polymer films. Conductivity increased with the increase of PCL in below critical level, however conductivity of the polymer film was decreased with increase of PCL concentration higher than the critical value.

Keywords

References

  1. Levi, B. G. Phys. Today 2000, 53, 19.
  2. MacDiarmid, A. G. Angew. Chem. Int. Ed. 2001, 40, 2581. https://doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
  3. Jin, Z.; Su, Y.; Duan, Y. Sens. Actuators B 2001, 72, 75. https://doi.org/10.1016/S0925-4005(00)00636-5
  4. Sotomayor, P. T.; Raimurdo, I. M.; Zarbin, J. G.; Rohwedder, J. J.R.; Netto, G. O.; Alves, O. L. Sens. Actuators B 2001, 74, 157. https://doi.org/10.1016/S0925-4005(00)00726-7
  5. Kane-Maguire, L. A. P.; Wallsce, G. G. Synth. Met. 2001, 119, 39. https://doi.org/10.1016/S0379-6779(00)00652-4
  6. Hamers, R. J. Nature 2001, 412, 489. https://doi.org/10.1038/35087682
  7. Rosseinsky, D. R.; Mortimer, R. J. Adv. Mater. 2001, 13, 783. https://doi.org/10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
  8. Kim, G. H. Macromol. Res. 2004, 12, 564. https://doi.org/10.1007/BF03218445
  9. Cha, S. H.; Kim, J. U.; Lee, J. C. Macromol. Res. 2008, 16, 711. https://doi.org/10.1007/BF03218585
  10. El-Sherif, M. E.; Yuan, J.; MacDiarmid, A. G. J. Intell. Mater. Syst. Struct. 2000, 11, 407 . https://doi.org/10.1177/104538900772664747
  11. Mallik, H.; Sarkar, A. J. Non-Cryst. Solid. 2006, 352, 795. https://doi.org/10.1016/j.jnoncrysol.2006.02.032
  12. Tiwari, A. J. Poly. Res. 2008, 15, 337. https://doi.org/10.1007/s10965-008-9176-4
  13. Basavaraja, C.; Jo, E. A.; Kim, B. S.; Mallikarjun, H.; Huh, D. S.Bull. Korean Chem. Soc. 2010, 31(10), 2967. https://doi.org/10.5012/bkcs.2010.31.10.2967
  14. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Huh, D. S.Bull. Korean Chem. Soc. 2008, 29, 1.
  15. Elfick, A. P. D. Biomaterials 2002, 23, 4463. https://doi.org/10.1016/S0142-9612(02)00163-1
  16. Kim, H. W.; Deng, Y.; Miranda, P.; Pajares, A.; Kim, D. K.; Kim,H. E.; Lawn, B. R. J. Am. Ceram. Soc. 2001, 84, 2377.
  17. Ciardelli, G.; Chiono, V.; Vozzi, G.; Pracella, M.; Ahluwalia, A.;Barbani, N.; Cristallini, C.; Giusti, P. Biomacromlecules 2005, 6, 1961. https://doi.org/10.1021/bm0500805
  18. Lovinger, A. J.; Han, B. J.; Padden, F. J.; Mirau, P. A. J. Polym. Sci. B: Polym. Phys. 1993, 31, 115. https://doi.org/10.1002/polb.1993.090310201
  19. Martin, D. P.; Williams, S. F. Biochem. Eng. J. 2003, 16, 97. https://doi.org/10.1016/S1369-703X(03)00040-8
  20. Messersmith, P. B.; Giannelis, E. P. J. Polym. Sci. A 1995, 33, 1047. https://doi.org/10.1002/pola.1995.080330707
  21. Pektok, E.; Nottelet, B.; Tille, J. C.; Gurny, R.; Kalangos, A.;Moeller, M.; Walpoth, B. H. Circulation 2008, 118, 2563. https://doi.org/10.1161/CIRCULATIONAHA.108.795732
  22. Aishwarya, S.; Mahalakshmi, S.; Sehgal, P. K. J. Microencapsul.2008, 25, 298. https://doi.org/10.1080/02652040801972004
  23. Chynoweth, K. R.; Stachurski, Z. H. Polymer 1986, 27(12), 1912. https://doi.org/10.1016/0032-3861(86)90181-3
  24. Skoglund, P.; Fransson, A. J. Appl. Polym. Sci. 1996, 61(13), 2455. https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2455::AID-APP25>3.0.CO;2-1
  25. Wang, Y.; Rodriguez-Perez, M. A.; Reis, R. L.; Mano, J. F.Macromol. Mater. Eng. 2005, 290(8), 792. https://doi.org/10.1002/mame.200500003
  26. Homminga, D.; Goderis, B.; Dolbnya, I.; Groeninckx, G. Polymer2006, 47(5), 1620. https://doi.org/10.1016/j.polymer.2005.12.080
  27. Mitchell, C. A.; Krishnamoorti, R. Polymer 2005, 46(20), 8796. https://doi.org/10.1016/j.polymer.2005.05.101
  28. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Vishnuvardhan, T. K.;Pierson, R.; Huh, D. S. J. Polym. Res. 2010, 17, 233. https://doi.org/10.1007/s10965-009-9309-4
  29. Basavaraja, C.; Jo, E. A.; Kim, B. S.; Huh, D. S. Bull. Korean Chem. Soc. 2010, 31(8), 2207. https://doi.org/10.5012/bkcs.2010.31.8.2207
  30. Basavaraja, C.; Veeranagouda, Y.; Kim, N. R.; Jo, E. A.; Lee, K.;Huh, D. S. Bull. Korean Chem. Soc. 2009, 30(5), 1097. https://doi.org/10.5012/bkcs.2009.30.5.1097
  31. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Revanasiddappa,M.; Huh, D. S. Bull. Korean Chem. Soc. 2008, 29(12), 2423. https://doi.org/10.5012/bkcs.2008.29.12.2423
  32. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Huh, D. S.J. Polym. Sci. B: Polym. Phys. 2009, 47, 36. https://doi.org/10.1002/polb.21611
  33. Basavaraja, C.; Kim, N. R.; Jo, E. A.; Huh, D. S. Macromol. Res.2010, 18(3), 222. https://doi.org/10.1007/s13233-010-0305-7
  34. Basavaraja, C.; Jo, E. A.; Kim, B. S.; Huh, D. S. Chem. Phys. Lett.2010, 492, 272. https://doi.org/10.1016/j.cplett.2010.04.059
  35. Basavaraja, C.; Kim, N. R.; Jo, E. A.; Huh, D. S. J. Polym. Res.2010, 17, 861. https://doi.org/10.1007/s10965-009-9378-4
  36. Basavaraja, C.; Jo, E. A.; Kim, B. S.; Kim, D. G.; Huh, D. S.Polym. Eng. Sci. 2011, 51, 54. https://doi.org/10.1002/pen.21780
  37. Basavaraja, C.; Pierson, R.; Vishnuvardhan, T. K.; Huh, D. S. Eur.Poly. J. 2008, 44, 1556. https://doi.org/10.1016/j.eurpolymj.2008.02.015
  38. Hoidy, W. H.; Ahmad, M. B.; Al-Mulla, E. A. J.; Bt Ibrahim, N.A. J. Appl. Sci. 2010, 10(2), 97. https://doi.org/10.3923/jas.2010.97.106
  39. Venugopal, J.; Zhang, Y. Z.; Ramakrishna, S. Nanotechnology2005, 16, 2138. https://doi.org/10.1088/0957-4484/16/10/028
  40. Xiao, X.; Liu, R.; Tang, X. J. Mater. Sci: Mater. Med. 2009, 20,691. https://doi.org/10.1007/s10856-008-3619-7
  41. Basavaraja, C.; Pierson, R.; Huh, D. S. J. Appl. Polym. Sci. 2008,108, 1070. https://doi.org/10.1002/app.27582
  42. Patil, S. F.; Bedekar, A. G.; Agashe, C. Mater. Lett. 1992, 14, 307. https://doi.org/10.1016/0167-577X(92)90043-J
  43. Derval, S. R.; Rosa, S.; Cristina, G. F.; Andréa, G. P. Polimeros:Cienicia e Technologia 2004, 14(3), 181. https://doi.org/10.1590/S0104-14282004000300014
  44. Wang, Z. H.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J.Phys. Rev. B 1992, 45, 4190. https://doi.org/10.1103/PhysRevB.45.4190
  45. Zuo, F.; Angelopoulos, M.; MacDiarmid, A. G.; Epstein, A. J.Phys. Rev. B 1987, 36, 3475. https://doi.org/10.1103/PhysRevB.36.3475
  46. Ansari, R.; Price, W. E.; Wallace, G. G. Polymer 1996, 37, 917. https://doi.org/10.1016/0032-3861(96)87273-9
  47. Shevaleevskiy, O. I.; Myong, S. Y.; Lim, K. S.; Miyajima, S.;Konagai, M. Semiconductors 2005, 39(6), 709. https://doi.org/10.1134/1.1944863
  48. Stutzmann, M.; Brandt, M. S.; Bayerl, M. W. J. Non-cryst. Solids2000, 1, 266.
  49. Raghavendra, S. C.; Khasim, S.; Revanasiddappa, M.; AmbikaPrasad, M. V. N.; Kulkarni, A. B. Bull. Mater. Sci. 2003, 26(7), 733. https://doi.org/10.1007/BF02706771
  50. Su, S. J.; Kuramoto, N. Synth. Met. 2000, 114, 147. https://doi.org/10.1016/S0379-6779(00)00238-1
  51. Guven, O. Radiation Physics and Chemisty 2007, 76, 1302. https://doi.org/10.1016/j.radphyschem.2007.02.020
  52. Ekramul Mahmud, H. N. M.; Kassim, A.; Zainal, Z.; Yunus, W.M. M. Science Asia 2005, 31, 313. https://doi.org/10.2306/scienceasia1513-1874.2005.31.313

Cited by

  1. Fabrication and characterization of honeycomb-patterned film from poly(ɛ-caprolactone)/poly((R)-3-hydroxybutyric acid)/reduced graphene oxide composite vol.45, pp.10, 2013, https://doi.org/10.1038/pj.2013.34
  2. Effects of hyperbranched and linear architecture on properties of polymers composed of poly(ɛ-caprolactone) and hydroxycinnamic acid vol.56, pp.3, 2014, https://doi.org/10.1134/S0965545X14030092
  3. nanocomposites and their structural, optical and electrical properties vol.5, pp.120, 2015, https://doi.org/10.1039/C5RA17733B
  4. Studies on photoreactive and biodegradable copolymers composed of poly(ɛ-caprolactone) and 4-hydroxycinnamic acid vol.44, pp.11, 2012, https://doi.org/10.1038/pj.2012.85
  5. Characterization and electrical properties of honeycomb-patterned poly(ε-caprolactone)/reduced graphene oxide composite film vol.33, pp.12, 2012, https://doi.org/10.1002/pc.22357
  6. Synthesis and Properties of Degradable Copolymers Composed of Poly(ε‐caprolactone) and 3,4‐Dihydroxycinnamic Acid vol.30, pp.10, 2011, https://doi.org/10.1002/cjoc.201200457
  7. Characterization and DC electrical conductivity of the composite films containing polyaniline‐carboxymethyl cellulose vol.33, pp.9, 2011, https://doi.org/10.1002/pc.22289
  8. Blood-compatible Polyaniline Coated Electrospun Polyurethane Fiber Scaffolds for Enhanced Adhesion and Proliferation of Human Umbilical Vein Endothelial Cells vol.20, pp.2, 2011, https://doi.org/10.1007/s12221-019-8735-0