• 제목/요약/키워드: Polymer composites

검색결과 1,695건 처리시간 0.027초

리그노셀룰로오스 섬유/열가소성 고분자 복합재의 계면 현상 (Interfacial Phenomena of Lignocellulose Fiber/Thermoplastic Polymer Composites)

  • 손정일;양한승;김현중
    • 접착 및 계면
    • /
    • 제3권4호
    • /
    • pp.44-52
    • /
    • 2002
  • Composite materials are created by combining two or more component to achieve desired properties which could not be obtained with the separate components. The use of reinforcing fillers, which can reduce material costs and improve certain properties, is increasing in thermoplastic polymer composites. Currently, various inorganic fillers such as talc, mica, clay, glass fiber and calcium carbonate are being incorporated into thermoplastic composites. Nevertheless, lignocellulose fibers have drawn attention due to their abundant availability, low cost and renewable nature. In recent, interest has grown in composites made from lignocellulose fiber in thermoplastic polymer matrices, particularly for low cost/high volume applications. In addition to high specific properties, lignocellulose fibers offer a number of benefits for lignocellulose fiber/thermoplastic polymer composites. These include low hardness, which minimize abrasion of the equipment during processing, relatively low density, biodegradability, and low cost on a unit-volume basis. In spite of the advantage mentioned above, the use of lignocellulose fibers in thermoplastic polymer composites has been plagued by difficulties in obtaining good dispersion and strong interfacial adhesion because lignocellulose fiber is hydrophilic and thermoplastic polymer is hydrophobic. The application of lignocellulose fibers as reinforcements in composite materials requires, just as for glass-fiber reinforced composites, a strong adhesion between the fiber and the matrix regardless of whether a traditional polymer matrix, a biodegradable polymer matrix or cement is used. Further this article gives a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites. Coupling agents in lignocellulose fiber and polymer composites play a very important role in improving the compatibility and adhesion between polar lignocellulose fiber and non-polar polymeric matrices. In this article, we also review various kinds of coupling agent and interfacial mechanism or phenomena between lignocellulose fiber and thermoplastic polymer.

  • PDF

A Review on the Flammability and Flame Retardant Properties of Natural Fibers and Polymer Matrix Based Composites

  • Prabhakar, M.N.;Shah, Atta Ur Rehaman;Song, Jung-Il
    • Composites Research
    • /
    • 제28권2호
    • /
    • pp.29-39
    • /
    • 2015
  • Natural fibers reinforced polymer composites are being used in several low strength applications. More research is going on to improve their mechanical and interface properties for structural applications. However, these composites have serious issues regarding flammability, which are not being focused broadly. A limited amount of literature has been published on the flame retardant techniques and flammability factor of natural fibers based polymer matrix composites. Therefore, it is needed to address the flammability properties of natural fibers based polymer composites to expand their application area. This paper summarizes some of the recent literature published on the subject of flammability and flame retardant methods applied to natural fibers reinforced polymer matrix composites. Different factors affecting the flammability, flame retardant solutions, mechanisms and characterization techniques have been discussed in detail.

PTC Behavior of Polymer Composites Containing Ionomers upon Electron Beam Irradiation

  • Kim, Jong-Hawk;Cho, Hyun-Nam;Kim, Seong-Hun;Kim, Jun-Young
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.53-62
    • /
    • 2004
  • We have prepared polymer composites of low-density polyethylene (LDPE) and ionomers (Surlyn 8940) containing polar segments and metal ions by melt blending with carbon black (CB) as a conductive filler. The resistivity and positive temperature coefficient (PTC) of the ionomer/LDPE/CB composites were investigated with respect to the CB content. The ionomer content has an effect on the resistivity and percolation threshold of the polymer composites; the percolation curve exhibits a plateau at low CB content. The PTC intensity of the crosslinked ionomer/LDPE/CB composite decreased slightly at low ionomer content, and increased significantly above a critical concentration of the ionomer. Irradiation-induced crosslinking could increase the PTC intensity and decrease the NTC effect of the polymer composites. The minimum switching current (Ι$\sub$trip/) of the polymer composites decreased with temperature; the ratio of Ι$\sub$trip/ for the ionomer/LDPE/CB composite decreased to a greater extent than that of the LDPE/CB composite. The average temperature coefficient of resistance (${\alpha}$$\sub$T/) for the polymer composites increased in the low-temperature region.

The Electrical Property of Polymer Matrix Composites Added Carbon Powder

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제25권12호
    • /
    • pp.678-682
    • /
    • 2015
  • The electrical property of polymer matrix composites with added carbon powder is studied based on the temperature dependency of the conduction mechanism. The temperature coefficient of the resistance of the polymer matrix composites below the percolation threshold (x) changed from negative to positive at 0.20 < x < 0.21; this trend decreased with increasing of the percolation threshold. The temperature dependence of the electrical property(resistivity) of the polymer matrix composites below the percolation threshold can be explained by using a tunneling conduction model that incorporates the effect of the thermal expansion of the polymer matrix composites into the tunneling gap. The temperature coefficient of the resistance of the polymer matrix composites above the percolation threshold has a positive value; its absolute value increased with increasing volume fraction of carbon powder. By assuming that the electrical conduction through the percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of the carbon power, the temperature dependency of the resistivity above the percolation threshold can be well explained without violating the universal law of conductivity.

Deformation Behavior and Nucleation Activity of a Thermotropic Liquid­Crystalline Polymer in Poly(butylene terephthalate)-Based Composites

  • Kim Jun Young;Kang Seong Wook;Kim Seong Hun;Kim Byoung Chul;Shim Kwang Bo;Lee Jung Gyu
    • Macromolecular Research
    • /
    • 제13권1호
    • /
    • pp.19-29
    • /
    • 2005
  • Polymer composites based on a thermotropic liquid-crystalline polymer (TLCP) and poly(butylene terephthalate) (PBT) were prepared using a melt blending process. Polymer composites consisting of bulk cheap polyester with a small quantity of expensive TLCP are of interest from a commercial perspective. The interactions between the PBT chains and the flexible poly(ethylene terephthalate) (PET) units in the TLCP phase resulted in an improvement in the compatibility of PBT/TLCP composites. TLCP droplets deformed and fragmented into smaller droplets in the PBT/TLCP composites, which resulted in TLCP fibrillation through the effective deformation of the TLCP droplets. The nucleation activities of the PBT/TLCP composites increased by adding even a small amount of the TLCP component.

RC 구조물의 균열 보수용 폴리머 시멘트 복합체의 점도와 유동성에 관한 연구 (A Study on the Viscosity and Flowability of Polymer-Cement Composites for Repairing Cracks of RC Structures)

  • 홍대원;김상혁;권우찬;조영국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.166-167
    • /
    • 2021
  • The purpose of this study is to evaluate the viscosity and flowability of polymer-cement composites for repairing cracks of RC structures. The viscosity and flowability of the polymer cement composites differed greatly depending on the type of polymer and the polymer cement ratio, and the polymer cement composites could be produced that could repair fine cracks in the RC structure without material separation by adjusting the proper water-cement ratio. In particular, the mixing of high viscosity EVA-modified polymer composites could be adjusted.

  • PDF

수산화인회석이 충전된 고분자 복합체의 치과적 물성 (Dental Properties of Hydroxyapatite Filled Polymer Composite)

  • 서기택;윤진구;김주환;김오영
    • 응용화학
    • /
    • 제9권2호
    • /
    • pp.25-28
    • /
    • 2005
  • To evaluate the dental restorative application of polymer composites filled with hydroxyapatite (HAP) which is an inorganic component of human bone material, dental properties of the polymer composites were investigated. A visible light system was utilized to activate the acrylate resin matrix of the composites. Maximum loading percentage of HAP in composite was 65 wt% and the depth of cure was 6.0 mm which can be applicable for dental restoration. With increasing the HAP content, degree of conversion of polymer composites was slightly decreased, however, polymerization shrinkage value was not varied. Diametral tensile strength value was enhanced with an increase of HAP content, however, there was no strict trend between flexural strength and HAP concentration. Anyhow, polymer composites prepared herein have superior mechanical properties sufficient specifications applicable to dental materials.

Thermotropic Liquid Crystal Polymer Reinforced Poly(butylene terephthalate) Composites to Improve Heat Distortion Temperature and Mechanical Properties

  • Kim, Jun-Young;Kang, Seong-Wook;Kim, Seong-Hun
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.358-366
    • /
    • 2006
  • Thermotropic liquid crystal polymer (TLCP)-reinforced poly(butylene terephthalate) (PBT) composites were prepared by melt processing. The improvement in the mechanical properties and the processability of the PBT/TLCP composites was attributed to the reinforcing effect by TLCP phase and its well distribution in the PBT matrix. X-ray diffraction results demonstrated that a slow cooling process leads to the thicker lamellar structures and the formation of more regular crystallites in the composites. The incorporation of TLCP improves not only the tensile strength and flexural modulus but also the heat distortion temperature (HDT) of the PBT/TLCP composites. The HDT values of the composites were dependent on TLCP content. The improvement in the HDT values of the PBT/TLCP composites may be explained in terms with the increased flexural modulus, the development of more regular crystalline structures, and the enhancement of the ability of the composites to sustain the storage modulus by TLCP phase. In addition, the simple additivity rule makes it possible to predict the HDT values of the PBT/TLCP composites.

경량골재를 사용한 콘크리트 복합체의 단열성능에 관한 연구 (A Study on the Thermal Insulation Property of Concrete Composites using Light-weight Aggregate)

  • 소승영
    • 한국건축시공학회지
    • /
    • 제4권3호
    • /
    • pp.93-100
    • /
    • 2004
  • In recent years, it has widely been studied on the light-weight composites for the purpose of the large space and thermal insulation of building structures. The purpose of this study is to evaluate the properties of light-weight composites made by binders as cement, resin and polymer cement slurry. The concrete composites are prepared with various conditions such as polymer-cement ratio, void-filling ratio, type of resin, filler content and light-weight aggregate content, tested for thermal conductivity. From the test results, the thermal conductivity of concrete composites with the binder of cement tends to decrease with increasing polymer-cement ratio, and to increase with increasing void-filling ratio. The thermal conductivity of concrete composites with the binder of resin are markedly affected by the light-weight aggregate content, type of resin and filler content. The composites made by polymer-modified concrete and polymer cement slurry have a good thermal insulation property. From the this study, we can recommend the proper mix proportions for thermal insulation Panel or concrete. Expecially. the thermal conductivity of concrete composites made by polyurethane resin is almost the same as that of the conventional expanded polystyrene resin.

자기전기 고분자 복합체 (Magnetoelectric Polymer Composites)

  • 고규진;노병일;양수철
    • 한국전기전자재료학회논문지
    • /
    • 제34권4호
    • /
    • pp.229-241
    • /
    • 2021
  • Since 2010, polymer-based magnetoelectric (ME) composites have been developed with detailed investigations of multiferroic properties such as piezoelectric, magnetostrictive, and magnetoelectric, etc. In particular, as a piezoelectric polymer, poly(vinylidene fluoride) and its co-polymers have been widely used in ME composites for energy harvesting, health monitoring, environment treatment, and bio-medical applications. In this study, main research trend and selected experimental results of polymer-based ME composites are briefly reviewed with respect to composite structure as well as application field. A conclusion was drawn that the polymer-based ME composites would be feasible as flexible devices or functional membranes in the near future.