DOI QR코드

DOI QR Code

Detection of Long Alkyl Esters of Succinic and Maleic Acid Using TLC-MALDI-MS

  • Kim, Hin-Hee (Department of Chemistry, Chungnam National University) ;
  • Han, Sang-Pil (Department of Chemistry, Chungnam National University) ;
  • Kim, Jeong-Kwon (Department of Chemistry, Chungnam National University) ;
  • Kim, Yeong-Joon (Department of Chemistry, Chungnam National University)
  • Received : 2010.12.22
  • Accepted : 2011.01.11
  • Published : 2011.03.20

Abstract

Four esters of succinic and maleic acid were synthesized, separated by thin-layer chromatography (TLC), and identified using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). A comparison of matrix materials showed that 2,6-dihydroxybenzoic acid (2,6-DHB) yielded a greater ionization efficiency than 2,5-DHB prior to TLC separation. The location of each ester sample on the TLC plate was estimated by comparing the developed plate with a duplicate plate that had been visualized by immersion in a $KMnO_4$ solution. Generally, mass spectra obtained from the $KMnO_4$-visualized plate were relatively poor. Reproducible mass spectra with high peak abundance were difficult to obtain using the 2,6-DHB matrix from crude synthetic esters extracted from the TLC plates. Significant improvements in both reproducibility and sensitivity were realized by using pencil lead as the MALDI matrix. The current methodology will be beneficial to organic chemists since it can provide a guideline for simple and rapid characterization of small organic compounds.

Keywords

References

  1. Takahashi, K.; Sakano, H.; Numata, N.; Kuroda, S.; Mizuno, N.Drug Dev. Ind. Pharm. 2002, 28, 1285. https://doi.org/10.1081/DDC-120015362
  2. Zeikus, J. G.; Jain, M. K.; Elankovan, P. Appl. Microbiol. and Biot.1999, 51, 545. https://doi.org/10.1007/s002530051431
  3. Song, H.; Lee, S. Y. Enzyme Microb. Technol. 2006, 39, 352. https://doi.org/10.1016/j.enzmictec.2005.11.043
  4. Anastopoulos, G.; Lois, E.; Zannikos, F.; Kalligeros, S.; Teas, C.Tribol. Int. 2001, 34, 749. https://doi.org/10.1016/S0301-679X(01)00067-6
  5. Trofimov, V. A.; Spirkin, V. G.; Bocharov, A. A.; Trofimova, M.V. Chem. Tech. Fuels Oils 1999, 35, 18. https://doi.org/10.1007/BF02694256
  6. Trofimov, V. A.; Spirkin, V. G.; Kozhekina, E. A.; Bocharov, A. A.Chem. Tech. Fuels Oils 1996, 32, 30. https://doi.org/10.1007/BF00729856
  7. Anastopoulos, G.; Lois, E.; Karonis, D.; Zanikos, F.; Kalligeros, S.Ind. End. Chem. Res. 2000, 40, 452.
  8. Anastopoulos, G.; Lois, E.; Serdari, A.; Zanikos, F.; Stournas, S.;Kalligeros, S. Energ. Fuel. 2000, 15, 106.
  9. Drown, D. C.; Harper, K.; Frame, E. J. Am. Oil Chem. Soc. 2001,78, 579. https://doi.org/10.1007/s11746-001-0307-y
  10. Shariatgorji, M.; Spacil, Z.; Maddalo, G.; Cardenas, L. B.; Ilag, L.L. Rapid Commun. Mass Spectrom. 2009, 23, 3655. https://doi.org/10.1002/rcm.4297
  11. Hong, J. M.; Lee, A.; Han, H.; Kim, J. Anal. Biochem. 2009, 384,368. https://doi.org/10.1016/j.ab.2008.10.012
  12. Cvacka, J.; Svatos, A. Rapid Commun. Mass Spectrom. 2003, 17,2203. https://doi.org/10.1002/rcm.1178
  13. Panchagnula, V.; Mikulskis, A.; Song, L.; Wang, Y.; Wang, M.;Knubovets, T.; Scrivener, E.; Golenko, E.; Krull, I. S.; Schulz, M.;Heinz Emil, H.; Patton, W. F. J. Chromatogr. A 2007, 1155, 112. https://doi.org/10.1016/j.chroma.2007.04.029
  14. Muller, M.; Schiller, J.; Petkovic, M.; Oehrl, W.; Heinze, R.;Wetzker, R.; Arnold, K.; Arnhold, J. Chem. Phys. Lipids 2001,110, 151. https://doi.org/10.1016/S0009-3084(01)00132-3
  15. Fuchs, B.; Schiller, J.; Suess, R.; Zscharnack, M.; Bader, A.;Mueller, P.; Schuerenberg, M.; Becker, M.; Suckau, D. Anal. Bioanal. Chem. 2008, 392, 849. https://doi.org/10.1007/s00216-008-2301-8
  16. Nimptsch, K.; Suss, R.; Riemer, T.; Nimptsch, A.; Schnabelrauch,M.; Schiller, J. J. Chromatogr. A 2010, 1217, 3711. https://doi.org/10.1016/j.chroma.2010.04.005
  17. Crecelius, A.; Clench, M. R.; Richards, D. S.; Parr, V. J. Chromatogr.A 2002, 958, 249. https://doi.org/10.1016/S0021-9673(02)00391-6
  18. Lee, A.; Yang, H. J.; Kim, Y.; Kim, J. Bull. Korean Chem. Soc.2009, 30, 1127. https://doi.org/10.5012/bkcs.2009.30.5.1127
  19. Jessome, L.; Hsu, N. Y.; Wang, Y. S.; Chen, C. H. Rapid Commun.Mass Spectrom. 2008, 22, 130. https://doi.org/10.1002/rcm.3343
  20. Schiller, J.; Suss, R.; Fuchs, B.; Muller, M.; Petkovic, M.;Zschornig, O.; Waschipky, H. Eur. Biophys. J. Biophys. Lett. 2007,36, 517. https://doi.org/10.1007/s00249-006-0090-6
  21. Harvey, D. J. Mass Spectrom. Rev. 1999, 18, 349. https://doi.org/10.1002/(SICI)1098-2787(1999)18:6<349::AID-MAS1>3.0.CO;2-H
  22. Nielen, M. W. F. Mass Spectrom. Rev. 1999, 18, 309. https://doi.org/10.1002/(SICI)1098-2787(1999)18:5<309::AID-MAS2>3.0.CO;2-L
  23. Zhu, Y. F.; Lee, K. L.; Tang, K.; Allman, S. L.; Taranencko, N. I.;Chen, C. H. Rapid Commun. Mass Spectrom. 1995, 9, 1315. https://doi.org/10.1002/rcm.1290091318
  24. Lee, S. Y.; Kim, J.; Yang, H. J.; Shin, S.; Hong, J. M.; Kim, J. Mass Spectrom. Lett. 2010, 1, 33. https://doi.org/10.5478/MSL.2010.1.1.033
  25. Sunner, J.; Dratz, E.; Chen, Y. C. Anal. Chem. 1995, 67, 4335. https://doi.org/10.1021/ac00119a021
  26. Black, C.; Poile, C.; Langley, J.; Herniman, J. Rapid Commun. Mass Spectrom. 2006, 20, 1053. https://doi.org/10.1002/rcm.2408
  27. Langley, G. J.; Herniman, J. M.; Townell, M. S. Rapid Commun. Mass Spectrom. 2007, 21, 180. https://doi.org/10.1002/rcm.2827
  28. Wu, J. Y.; Chen, Y. C. J. Mass Spectrom. 2002, 37, 85. https://doi.org/10.1002/jms.264
  29. Gumieniczek, A.; Przyborowski, L. Acta Pol. Pharm. 1994, 51,429.
  30. Volf, K.; Pitr, K. Soud Lek 1992, 37, 25.
  31. Peng, S.; Edler, M.; Ahlmann, N.; Hoffmann, T.; Franzke, J. Rapid Commun. Mass Spectrom. 2005, 19, 2789. https://doi.org/10.1002/rcm.2120

Cited by

  1. MALDI-TOF Analysis of Polyhexamethylene Guanidine (PHMG) Oligomers Used as a Commercial Antibacterial Humidifier Disinfectant vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1708
  2. Combination of graphite-assisted laser desorption/ionization (GALDI) mass spectrometry with thin layer chromatography vol.69, pp.14, 2014, https://doi.org/10.1134/S1061934814140032
  3. Drawing a different picture with pencil lead as matrix-assisted laser desorption/ionization matrix for fullerene derivatives pp.1751-6838, 2017, https://doi.org/10.1177/1469066717740719
  4. A High-Lateral Resolution MALDI Microprobe Imaging Mass Spectrometer Utilizing an Aspherical Singlet Lens vol.34, pp.1, 2011, https://doi.org/10.5012/bkcs.2013.34.1.207
  5. Recent Advances in Combinations of TLC With MALDI and Other Desorption/Ionization Mass-Spectrometry Techniques vol.9, pp.None, 2021, https://doi.org/10.3389/fchem.2021.771801