DOI QR코드

DOI QR Code

Prediction of Lithium Diffusion Coefficient and Rate Performance by using the Discharge Curves of LiFePO4 Materials

  • Yu, Seung-Ho (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Park, Chang-Kyoo (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Jang, Ho (Department of Materials Science and Engineering, Korea University) ;
  • Shin, Chee-Burm (Department of Chemical Engineering, Ajou University) ;
  • Cho, Won-Il (Advanced Battery Center, Korea Institute of Science and Technology)
  • Received : 2010.11.02
  • Accepted : 2010.12.30
  • Published : 2011.03.20

Abstract

The lithium ion diffusion coefficients of bare, carbon-coated and Cr-doped $LiFePO_4$ were obtained by fitting the discharge curves of each half cell with Li metal anode. Diffusion losses at discharge curves were acquired with experiment data and fitted to equations. Theoretically fitted equations showed good agreement with experimental results. Moreover, theoretical equations are able to predict lithium diffusion coefficient and discharge curves at various discharge rates. The obtained diffusion coefficients were similar to the true diffusion coefficient of phase transformation electrodes. Lithium ion diffusion is one of main factors that determine voltage drop in a half cell with $LiFePO_4$ cathode and Li metal anode. The high diffusion coefficient of carbon-coated and Cr-doped $LiFePO_4$ resulted in better performance at the discharge process. The performance at high discharge rate was improved much as diffusion coefficient increased.

Keywords

References

  1. Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem, Solid State Lett. 2001, 4, A170. https://doi.org/10.1149/1.1396695
  2. Chen, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184. https://doi.org/10.1149/1.1498255
  3. Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517. https://doi.org/10.1016/S0013-4686(01)00631-4
  4. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123. https://doi.org/10.1038/nmat732
  5. Wang, D.; Li, H.; Shi, S.; Huang, X.; Chen, L. Electrochimica Acta 2005, 50, 2955. https://doi.org/10.1016/j.electacta.2004.11.045
  6. Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang, X. Phys. Rev. B 2003, 68, 195108. https://doi.org/10.1103/PhysRevB.68.195108
  7. Wen, C. J.; Boukamp, B. A.; Huggins, R. A. J. Electrochem. Soc. 1979, 126, 2258. https://doi.org/10.1149/1.2128939
  8. Ho, C.; Raistrick, I. D.; Huggins, R. A. J. Electrochem. Soc. 1980, 127, 345.
  9. Zhu, Y.; Wang, C. J. Phys. Chem. C 2010, 114, 2830. https://doi.org/10.1021/jp9113333
  10. Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Solid State Ionics 2002, 148, 45. https://doi.org/10.1016/S0167-2738(02)00134-0
  11. Churikova, A. V.; Ivanishchev, A. V.; Ivanishcheva, I. A.; Sycheva, V. O.; Khasanova, N. R.; Antipov, E. V. Electrochimica Acta2010, 55, 2939. https://doi.org/10.1016/j.electacta.2009.12.079
  12. Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. Electrochimica Acta 2009, 54, 4631. https://doi.org/10.1016/j.electacta.2009.03.007
  13. Shin, H. C.; Park, S. B.; Jang, H.; Chung, K. Y.; Cho, W. I.; Kim, C. S.; Cho, B. W. Electrochimica. Acta 2008, 53, 7946. https://doi.org/10.1016/j.electacta.2008.06.005
  14. Bisquert, J.; Vikhrenko, V. S. Electrochimica Acta 2002, 47, 3977. https://doi.org/10.1016/S0013-4686(02)00372-9
  15. Srinivasan, V.; Newman, J. J. Electrochemical Soc. 2004, 151(10), A1517. https://doi.org/10.1149/1.1785012
  16. Prosini, P. P. J. Electrochem. Soc. 2005, 152(10), A1925. https://doi.org/10.1149/1.2006607
  17. Pasquali, M.; Dell’Era, A.; Prosini, P. P. J. Solid State Electrochem. 2009, 13, 1859. https://doi.org/10.1007/s10008-008-0737-6
  18. Zhdanov, V. P. Surf. Sci. 1985, 149, L13.

Cited by

  1. Convection Effects on PGSE-NMR Self-Diffusion Measurements at Low Temperature: Investigation into Sources of Induced Convective Flows vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1970
  2. How electrode thicknesses influence performance of cylindrical lithium-ion batteries vol.46, pp.None, 2011, https://doi.org/10.1016/j.est.2021.103827