DOI QR코드

DOI QR Code

Nucleophilic Substitution Reactions of N-Methyl α-Bromoacetanilides with Benzylamines in Dimethyl Sulfoxide

  • Received : 2010.11.10
  • Accepted : 2010.12.31
  • Published : 2011.03.20

Abstract

Kinetic studies of the reactions of N-methyl-Y-${\alpha}$-bromoacetanilides with substituted X-benzylamines have been carried out in dimethyl sulfoxide at $25.0^{\circ}C$. The Hammett plots for substituent X variations in the nucleophiles (log $k_N$ vs ${\sigma}_X$) are slightly biphasic concave upwards/downwards, while the Bronsted plots (log $k_N$ vs $pK_a$) are biphasic concave downwards with breakpoints at X = H. The Hammett plots for substituent Y variations in the substrates (log $k_N$ vs ${\sigma}_Y$) are biphasic concave upwards/downwards with breakpoints at Y = H. The cross-interaction constant $\rho_{XY}$ values are all negative: $\rho_{XY}$ = -0.32 for X = Y = electron-donating; -0.22 for X = electron-withdrawing and Y = electron-donating; -1.80 for X = electron-donating and Y = electronwithdrawing; -1.43 for X = Y = electron-withdrawing substituents. Deuterated kinetic isotope effects are primary normal ($k_H/k_D$ > 1) for Y = electron-donating, while secondary inverse ($k_H/k_D$ < 1) for Y = electronwithdrawing substituent. The proposed mechanisms of the benzylaminolyses of N-methyl-Y-${\alpha}$-bromoacetanilides are a concerted mechanism with a five membered ring TS involving hydrogen bonding between hydrogen (deuterium) atom in N-H(D) and oxygen atom in C = O for Y = electron-donating, while a concerted mechanism with an enolate-like TS in which the nucleophile attacks the ${\alpha}$-carbon for Y = electronwithdrawing substituents.

Keywords

References

  1. Lee, I.; Shim, C. S.; Chung, S. Y.; Lee, H. W. J. Chem. Soc., Perkin Trans. 2 1988, 975.
  2. Lee, I.; Kim, I. C. Bull. Korean Chem. Soc. 1988, 9, 133
  3. Lee, I.; Shim, C. S.; Lee, H. W. J. Phys. Org. Chem. 1989, 2, 484. https://doi.org/10.1002/poc.610020607
  4. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 4706. https://doi.org/10.1021/jo000411y
  5. Lee, K. S.; Adhikary, K. K.; Lee, H. W.; Lee, B. S.; Lee, I. Org. Biomol. Chem. 2003, 1, 1989. https://doi.org/10.1039/b300477e
  6. Lee, I.; Lee, H. W.; Yu, Y. K. Bull. Korean Chem. Soc. 2003, 24, 993. https://doi.org/10.5012/bkcs.2003.24.7.993
  7. Dey, S.; Adhikary, K. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2005, 26, 776. https://doi.org/10.5012/bkcs.2005.26.5.776
  8. Adhikary, K. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 191. https://doi.org/10.5012/bkcs.2008.29.1.191
  9. Lee, I.; Hong, S. W.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2001, 66, 8549. https://doi.org/10.1021/jo0108212
  10. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 1996, 2, 2099.
  11. Ruff, A.; Csizmadia, I. G. Organic Reactions Equilibria, Kinetics and Mechanism; Elsevier: Amsterdam, Netherlands; 1994; Chapter 7.
  12. Williams, A. Free Energy Relationships in Organic and Bio-organic Chemistry; RSC: Cambridge, UK, 2003; Chapter 7.
  13. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  14. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  15. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  16. Poirier, R. A.; Youliang, W.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526. https://doi.org/10.1021/ja00085a037
  17. Yamata, H.; Ando, T.; Nagase, S.; Hanamusa, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631. https://doi.org/10.1021/jo00178a010
  18. Xhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826. https://doi.org/10.1021/ja00003a015
  19. Lee, I. Chem. Soc. Rev. 1995, 24, 223. https://doi.org/10.1039/cs9952400223
  20. Parker, A. J. Recent Advance in Physical Organic Chemistry; Gold, V., Ed.; Academic Press: New York, 1967; pp 216-217.
  21. Lee, H. W.; Lee, J. W.; Koh, H. J.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 642.
  22. Koh, H. J.; Kim, O. S.; Lee, H. W.; Lee, I. J. Phys. Org. Chem. 1997, 10, 725. https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<725::AID-POC943>3.0.CO;2-X
  23. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper and Row: New York, 1987; p 239.
  24. Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k

Cited by

  1. Accelerated Submonomer Solid-Phase Synthesis of Peptoids Incorporating Multiple Substituted N-Aryl Glycine Monomers vol.80, pp.21, 2011, https://doi.org/10.1021/acs.joc.5b01449
  2. Alteration of electronic effect causes change in rate determining step: Oxovanadium(IV)-salen catalyzed sulfoxidation of phenylmercaptoacetic acids by hydrogen peroxide vol.175, pp.None, 2011, https://doi.org/10.1016/j.poly.2019.114172
  3. Nucleofugality hierarchy, in the aminolysis reaction of 4-cyanophenyl 4-nitrophenyl carbonate and thionocarbonate. Experimental and theoretical study vol.45, pp.26, 2021, https://doi.org/10.1039/d0nj05837h