DOI QR코드

DOI QR Code

Blockade of Vascular Endothelial Growth Factor (VEGF) Aggravates the Severity of Acute Graft-versus-host Disease (GVHD) after Experimental Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT)

  • Kim, Ai-Ran (Department of Pediatrics, The Catholic University of Korea) ;
  • Lim, Ji-Young (Department of Pediatrics, Internal Medicine, The Catholic University of Korea) ;
  • Jeong, Dae-Chul (Department of Pediatrics, The Catholic University of Korea) ;
  • Park, Gyeong-Sin (Department of Pediatrics, Hospital Pathology, The Catholic University of Korea) ;
  • Lee, Byung-Churl (Department of Pediatrics, The Catholic University of Korea) ;
  • Min, Chang-Ki (Department of Pediatrics, Internal Medicine, The Catholic University of Korea)
  • Received : 2011.10.11
  • Accepted : 2011.11.03
  • Published : 2011.12.31

Abstract

Background: Recent clinical observation reported that there was a significant correlation between change in circulating vascular endothelial growth factor (VEGF) levels and the occurrence of severe acute graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT), but the action mechanisms of VEGF in GVHD have not been demonstrated. Methods: This study investigated whether or not blockade of VEGF has an effect on acute GVHD in a lethally irradiated murine allo-HSCT model of $B6\;(H-2^b)\;{\rightarrow}B6D2F1\;(H-2^{b/d})$. Syngeneic or allogeneic recipient mice were injected subcutaneously with anti-VEGF peptides, dRK6 ($50{\mu}g/dose$) or control diluent every other day for 2 weeks (total 7 doses). Results: Administration of the dRK6 peptide after allo-HSCT significantly reduced survival with greaterclinical GVHD scores and body weight loss. Allogeneic recipients injected with the dRK6 peptide exhibited significantly increased circulating levels of VEGF and expansion of donor $CD3^+$ T cells on day +7 compared to control treated animals. The donor $CD4^+$ and $CD8^+$ T-cell subsets have differential expansion caused by the dRK6 injection. The circulating VEGF levels were reduced on day +14 regardless of blockade of VEGF. Conclusion: Together these findings demonstrate that the allo-reactive responses after allo-HSCT are exaggerated by the blockade of VEGF. VEGF seems to be consumed during the progression of acute GVHD in this murine allo-HSCT model.

Keywords

References

  1. Devine SM, Adkins DR, Khoury H, Brown RA, Vij R, Blum W, DiPersio JF: Recent advances in allogeneic hematopoietic stem-cell transplantation. J Lab Clin Med 141;7-32, 2003. https://doi.org/10.1067/mlc.2003.5
  2. Wingard JR: Opportunistic infections after blood and marrow transplantation. Transpl Infect Dis 1;3-20, 1999. https://doi.org/10.1034/j.1399-3062.1999.10102.x
  3. Takatsuka H, Takemoto Y, Yamada S, Wada H, Tamura S, Fujimori Y, Okamoto T, Suehiro A, Kanamaru A, Kakishita E: Complications after bone marrow transplantation are manifestations of systemic inflammatory response syndrome. Bone Marrow Transplant 26;419-426, 2000. https://doi.org/10.1038/sj.bmt.1702517
  4. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20;864-874, 1992. https://doi.org/10.1097/00003246-199206000-00025
  5. Chen X, Christou NV: Relative contribution of endothelial cell and polymorphonuclear neutrophil activation in their interactions in systemic inflammatory response syndrome. Arch Surg 131;1148-1153, 1996. https://doi.org/10.1001/archsurg.1996.01430230030006
  6. Klagsbrun M, D'Amore PA: Regulators of angiogenesis. Annu Rev Physiol 53;217-239, 1991. https://doi.org/10.1146/annurev.ph.53.030191.001245
  7. Dvorak HF, Brown LF, Detmar M, Dvorak AM: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146;1029-1039, 1995.
  8. Fava RA, Olsen NJ, Spencer-Green G, Yeo KT, Yeo TK, Berse B, Jackman RW, Senger DR, Dvorak HF, Brown LF: Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med 180;341-346, 1994. https://doi.org/10.1084/jem.180.1.341
  9. Selvaraj SK, Giri RK, Perelman N, Johnson C, Malik P, Kalra VK: Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood 102;1515-1524, 2003. https://doi.org/10.1182/blood-2002-11-3423
  10. Iyer S, Leonidas DD, Swaminathan GJ, Maglione D, Battisti M, Tucci M, Persico MG, Acharya KR: The crystal structure of human placenta growth factor-1 (PlGF-1), an angiogenic protein, at 2.0 A resolution. J Biol Chem 276;12153-12161, 2001. https://doi.org/10.1074/jbc.M008055200
  11. Lunn RA, Sumar N, Bansal AS, Treleaven J: Cytokine profiles in stem cell transplantation: possible use as a predictor of graft-versus-host disease. Hematology 10;107-114, 2005. https://doi.org/10.1080/10245330400001975
  12. Min CK, Kim SY, Lee MJ, Eom KS, Kim YJ, Kim HJ, Lee S,Cho SG, Kim DW, Lee JW, Min WS, Kim CC, Cho CS: Vascular endothelial growth factor (VEGF) is associated with reduced severity of acute graft-versus-host disease and nonrelapse mortality after allogeneic stem cell transplantation. Bone Marrow Transplant 38;149-156, 2006. https://doi.org/10.1038/sj.bmt.1705410
  13. Bae DG, Gho YS, Yoon WH, Chae CB: Arginine-rich anti-vascular endothelial growth factor peptides inhibit tumor growth and metastasis by blocking angiogenesis. J Biol Chem 275; 13588-13596, 2000. https://doi.org/10.1074/jbc.275.18.13588
  14. Min CK, Maeda Y, Lowler K, Liu C, Clouthier S, Lofthus D, Weisiger E, Ferrara JL, Reddy P: Paradoxical effects of interleukin- 18 on the severity of acute graft-versus-host disease mediated by CD4+ and CD8+ T-cell subsets after experimental allogeneic bone marrow transplantation. Blood 104;3393-3399, 2004. https://doi.org/10.1182/blood-2004-02-0763
  15. Asai O, Longo DL, Tian ZG, Hornung RL, Taub DD, Ruscetti FW, Murphy WJ: Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic bone marrow transplantation. J Clin Invest 101;1835-1842, 1998. https://doi.org/10.1172/JCI1268
  16. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr, Crawford JM, Ferrara JL: An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood 88; 3230-3239, 1996.
  17. Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, Ferrara JL: Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 90;3204-3213, 1997.
  18. Yoo SA, Bae DG, Ryoo JW, Kim HR, Park GS, Cho CS, Chae CB, Kim WU: Arginine-rich anti-vascular endothelial growth factor (anti-VEGF) hexapeptide inhibits collagen-induced arthritis and VEGF-stimulated productions of TNF-alpha and IL-6 by human monocytes. J Immunol 174;5846-5855, 2005.
  19. Reddy P, Teshima T, Kukuruga M, Ordemann R, Liu C, Lowler K, Ferrara JL: Interleukin-18 regulates acute graft-versus- host disease by enhancing Fas-mediated donor T cell apoptosis. J Exp Med 194;1433-1440, 2001. https://doi.org/10.1084/jem.194.10.1433
  20. Tsuchihashi S, Ke B, Kaldas F, Flynn E, Busuttil RW, Briscoe DM, Kupiec-Weglinski JW: Vascular endothelial growth factor antagonist modulates leukocyte trafficking and protects mouse livers against ischemia/reperfusion injury. Am J Pathol 168;695-705, 2006. https://doi.org/10.2353/ajpath.2006.050759
  21. Takatsuka H, Takemoto Y, Okamoto T, Fujimori Y, Tamura S, Wada H, Okada M, Kanamaru A, Kakishita E: Adult respiratory distress syndrome-like disorders after allogeneic bone marrow transplantation. Transplantation 68;1343-1347, 1999. https://doi.org/10.1097/00007890-199911150-00021
  22. Takatsuka H, Takemoto Y, Okamoto T, Fujimori Y, Tamura S, Wada H, Okada M, Kanamaru A, Kakishita E: Thrombotic microangiopathy following allogeneic bone marrow transplantation. Bone Marrow Transplant 24;303-306, 1999. https://doi.org/10.1038/sj.bmt.1701890
  23. Takatsuka H, Takemoto Y, Okamoto T, Fujimori Y, Tamura S, Wada H, Okada M, Yamada S, Kanamaru A, Kakishita E: Predicting the severity of graft-versus-host disease from interleukin- 10 levels after bone marrow transplantation. Bone Marrow Transplant 24;1005-1007, 1999. https://doi.org/10.1038/sj.bmt.1702010
  24. Hill GR, Ferrara JL: The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood 95;2754-2759, 2000.
  25. Holler E: Cytokines, viruses, and graft-versus-host disease. Curr Opin Hematol 9;479-484, 2002. https://doi.org/10.1097/00062752-200211000-00002
  26. Brok HP, Heidt PJ, van der Meide PH, Zurcher C, Vossen JM: Interferon-gamma prevents graft-versus-host disease after allogeneic bone marrow transplantation in mice. J Immunol 151;6451-6459, 1993.
  27. Sykes M, Harty MW, Szot GL, Pearson DA: Interleukin-2 inhibits graft-versus-host disease-promoting activity of CD4+ cells while preserving CD4- and CD8-mediated graft-versus- leukemia effects. Blood 83;2560-2569, 1994.
  28. Yang YG, Sergio JJ, Pearson DA, Szot GL, Shimizu A, Sykes M: Interleukin-12 preserves the graft-versus-leukemia effect of allogeneic CD8 T cells while inhibiting CD4-dependent graftversus- host disease in mice. Blood 90;4651-4660, 1997.
  29. Frantz S, Vincent KA, Feron O, Kelly RA: Innate immunity and angiogenesis. Circ Res 96;15-26, 2005.
  30. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13;9-22, 1999. https://doi.org/10.1096/fasebj.13.1.9