DOI QR코드

DOI QR Code

Genetic Diversity of Common Reed in Korea Based on Morphological Characteristics and Random Amplified Polymorphic DNA Markers

  • Chu, Hyo-Sub (Bioindustrial Process Center, Jeonbuk Branch Institute of Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Cho, Won-Kyong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Rim, Yeong-Gil (Division of Applied Life Science (BK21 program), Environmental Biotechnology National Core Research Center, PMBBRC, Gyeongsang National University) ;
  • Jo, Yeon-Hwa (Division of Applied Life Science (BK21 program), Environmental Biotechnology National Core Research Center, PMBBRC, Gyeongsang National University) ;
  • Kim, Jae-Yean (Division of Applied Life Science (BK21 program), Environmental Biotechnology National Core Research Center, PMBBRC, Gyeongsang National University)
  • Received : 2011.05.16
  • Accepted : 2011.08.12
  • Published : 2011.12.31

Abstract

To elucidate genetic diversity of common reed in Korea, we collected a total of 674 common reed plants from 27 regions in South Korea. Hierarchical clustering using 7 morphological traits divided the 27 common reed populations into 7 groups. Random amplified polymorphic DNA (RAPD) results identified three distinct groups of common reed. Common reed accessions in group I mostly inhabit coastal areas. Group II includes reeds mostly collected from inland areas. Group III consists of common reed accessions collected from inland and coastal areas, suggesting that this group might contain hybrids. In summary, we suggest that parapatric speciation might be an important factor in the genetic diversity of common reed and geographical speciation of common reed that might be also affected by environmental gradients.

Keywords

References

  1. Antonovics, J. 1971. The effects of a heterogeneous environment on the genetics of natural populations. American Sci. 59: 593-599.
  2. Bjork, S. 1967. Ecologic investigations of Phragmites communis. Studies in theoretic and applied limnology. Folia Limnol. Scand. 14:1-248.
  3. Brix, H. 1999. Genetic diversity, ecophysiology and growth dynamics of reed (Phragmites australis). Aquat. Bot. 64: 179-184. https://doi.org/10.1016/S0304-3770(99)00050-9
  4. Caisse, M. and J. Antonovics. 1978. Evolution in closely adjacent plant populations. IX. Evolution of reproductive isolation in clinal populations. Heredity 40:371-384. https://doi.org/10.1038/hdy.1978.44
  5. Charles-Edwards, D.A. 1982. Physiological Determinants of Crop Growth, Academic Press, Sydney, Australia. pp. 1-161.
  6. Cho, D.H., M.Y. Chung, S.O. Jee, C.K. Kim, J.D. Chung and K.M. Kim. 2010. Intraspecific morphological characteristics and genetic diversity of Korean Calanthe. Korean J. Plant Res. 23:541-549.
  7. Cho, K.H., SK. Hong and DS. Cho. 2008. Ecological role of mountain ridges in and around Gwangneung royal tomb forest in central Korea. J. Plant Biol. 51:387-394. https://doi.org/10.1007/BF03036058
  8. Chun, YM. and Y.D. Choi. 2009. Expansion of Phragmites australis (Cav.) Trin. ex Steud. (common reed) into Typha spp. (cattail) wetlands in northwestern Indiana, USA. J. Plant Biol. 52:220-228. https://doi.org/10.1007/s12374-009-9024-z
  9. Clevering, O.A. and J. Lissner. 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat. Bot. 64:185-208. https://doi.org/10.1016/S0304-3770(99)00059-5
  10. Cui, B., Q. Yang, Z. Yang and K. Zhang. 2009. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 35:1090-1103. https://doi.org/10.1016/j.ecoleng.2009.03.022
  11. Doebeli, M. and U. Dieckmann. 2003. Speciation along environmental gradients. Nature 421: 259-264. https://doi.org/10.1038/nature01274
  12. Dogan, Y., A.M. Nedelcheva, D. Ovratov-Petkovic and I.M. Padure. 2008. Plants used in traditional handicrafts in several Balkan countries. Indian JTK. 7:157-161.
  13. Engloner, A.I. 2009. Structure, growth dynamics and biomass of reed (Phragmites australis) - A review. Flora 204:331-346. https://doi.org/10.1016/j.flora.2008.05.001
  14. Gorenflot, R., H. Tahiri and P. Lavabre. 1990. Anomalies me itotiques de la microsporogenese dans un complex polyploide: Phragmites australis (Cav.) Trin. ex Steud. Rev. Cytol. Biol. Veget.- Bot. 13:153-172.
  15. Hansen, D.L., C. Lambertini, A. Jampeetong and H. Brix. 2007. Clone-specific differences in Phragmites australis: Effects of ploidy level and geographic origin. Aquat. Bot. 86: 269-279. https://doi.org/10.1016/j.aquabot.2006.11.005
  16. Kim, Y.H. and J.H. Kim. 2009. Genetic variations and relationships of Phragmites japonica and P. communis according to water environment change. Korean J. Plant Res. 22:152-158 (in Korean).
  17. Kozlowska, M., A. Jozwiak, B. Szpakowska and P. Golinski. 2009. Biological aspects of cadmium and lead uptake by Phragmites australis (Cav. Trin ex steudel) in natural water ecosystems. J. Elementol. 14:299-312.
  18. Lambertini, C., M.H.G. Gustafsson, J. Frydenberg, J. Lissner, M. Speranza and H. Brix. 2006. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Syst. Evol. 258:161-182. https://doi.org/10.1007/s00606-006-0412-2
  19. Lambertini, C., M.H.G. Gustafsson, J. Frydenberg, M. Speranza and H. Brix. 2008. Genetic diversity patterns in Phragmites australis at the population, regional and continental scales. Aquat. Bot. 88:160-170. https://doi.org/10.1016/j.aquabot.2007.10.002
  20. League, M.T., E.P. Colbert, D.M. Seliskar and J.L. Gallagher. 2006. Rhizome growth dynamics of native and exotic haplotypes of Phragmites australis (common reed). Estuar. Coast. 29:269-276. https://doi.org/10.1007/BF02781995
  21. Meyerson, L.A., K. Saltonstall, L. Windham, E. Kiviat and S. Findlay. 2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecol. Manage. 8:89-103. https://doi.org/10.1023/A:1008432200133
  22. Oh, B. J., M.K. Ko and C.H. Lee. 2006. Evaluation of genetic diversity among the genus Viola by RAPD markers. Korean J. Plant Res. 19:716-720.
  23. Pauca-Comanescu, M., O.A. Clevering, J. Hanganu and M. Gridin. 1999. Phenotypic differences among ploidy levels of Phragmites australis growing in Romania. Aquat. Bot. 64: 223-234. https://doi.org/10.1016/S0304-3770(99)00052-2
  24. Peruzzi, E., C. Macci, S. Doni, G. Masciandaro, P. Peruzzi, M. Aiello and B. Ceccanti. 2009. Phragmites australis for sewage sludge stabilization. Desalination 246:110-119. https://doi.org/10.1016/j.desal.2008.02.039
  25. Raicu, P., S. Staicu, V. Stoian and T. Roman. 1972. The Phragmites communis Trin. chromosome complement in the Danube Delta. Hydrobiologia 39:83-89. https://doi.org/10.1007/BF00047596
  26. Saltonstall, K. 2003. A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23:1043-1047. https://doi.org/10.1672/0277-5212(2003)023[1043:ARMFIT]2.0.CO;2
  27. Sturn, A., J. Quackenbush and Z. Trajanoski. 2002. Genesis: Cluster analysis of microarray data. Bioinformatics 18: 207-208. https://doi.org/10.1093/bioinformatics/18.1.207