DOI QR코드

DOI QR Code

Photovoltaic performance evaluation of the bonded single crystalline silicon solar cell on composite specimens under mechanical loading

기계적 하중 하에서 복합재료 시험편에 접착된 단결정 실리콘태양전지의 성능평가

  • 김종천 (서울과학기술대학교 NID융합기술대학원) ;
  • 최익현 (한국항공우주연구원) ;
  • 김대현 (서울과학기술대학교 기계공학과) ;
  • 정성균 (서울과학기술대학교 기계공학과)
  • Received : 2011.12.09
  • Accepted : 2011.12.26
  • Published : 2011.12.31

Abstract

The objective of this study is to investigate appropriate bonding methods of solar cells in order to apply solar cells, which have been receiving particular attention as a renewable energy due to fossil energy depletion and environment issues, to composite structures. Back-contact solar cells with approximately 24.2% energy conversion efficiency were used in this study. Since silicon-based solar cells are mechanically fragile, the secondary-bonding methods using adhesive were examined in this study. The experiment was conducted with three kinds of bonding materials such as EVA film, Resin film and elastic adhesive. The performance of solar cells for three types of adhesives under mechanical loading on test specimens is conducted. In addition, the measuring equipment was designed to evaluate the performance of the solar cells under mechanical loading in real time and the fracture characteristics depending on bonding materials were evaluated. The reason decreasing solar cells efficiency were analyzed and considered by Fractography. The results show that the solar cell performance is largely affected by bonding techniques. Moreover, the bonding method using elastic adhesive shows best solar cell efficiency.

본 연구에서는 화석에너지 고갈과 환경문제로 인해 새로운 신재생에너지로 주목 받고 있는 태양전지를 대표적인 경량재료인 복합재료에 적용하기 위해 적절한 태양전지 접착 방법에 대한 연구를 진행하였다. 사용된 태양전지는 후면전극 태양전지로 에너지변환 실험실 효율이 약 24.2%인 태양전지를 사용하였다. 하지만, 실리콘계열 태양전지는 재료의 특성상 깨지기 쉽기 때문에 일반적으로 사용되고 있는 동시경화 접착법 대신 접착제를 이용한 이차 접착법을 사용하였다. 접착재료는 태양전지의 충진재 및 접착제로 사용되고 있는 EVA film 과 프리프레그의 수지인 Resin film, 그리고 탄성 접착제를 이용하여 실험을 진행 하였으며, 태양전지가 접착된 복합재료 시험편에 기계적 하중을 부가하여 접착제 종류별 태양전지의 성능변화를 측정하였다. 또한, 기계적 하중 하에서 실시간으로 태양전지의 성능을 평가할 수 있는 측정장치를 설계하여 접착재료별 파단 시점과 특성을 비교 평가 하였다. 파단면분석을 통해 태양전지 효율 감소원인을 분석하여 고찰하였다. 실험결과 태양전지의 접착방법에 따라서 태양전지의 효율이 크게 영향을 받는다는 것을 파악하였다. 또한, 탄성접착제를 사용한 접착 방법이 가장 높은 태양전지 효율 성능을 보여주고 있음을 확인하였다.

Keywords

References

  1. Miro Zeman, "New trends in thin-film silicon solar cell technology," ASDAM, 2002, pp. 353-362.
  2. Sik, B.D., "Trends of the solar cell technology," KCERS, 2010, pp. 20-27.
  3. Peter L.M. Phill. Trans. R. Soc. A 2011;369;1840-1856. https://doi.org/10.1098/rsta.2010.0348
  4. Nijs, J.F., Szlufcik, J., Poormans, J., Sivoththaman, S., and Mertens, R.P., "Advanced cost-effective crystalline silicon solar cell technologies," Solar Energy Materials & Solar Cells, Vol. 65, Issues 1-4, 2001, pp. 249-259. https://doi.org/10.1016/S0927-0248(00)00100-8
  5. Razykov, T.M., Ferekides, C.S., Morel, D., Stefanakos, E., Ullal, H.S., and Upadhyaya, H.M., "Solar photovoltaic electricity: Current status and future prospects," Solar Energy, Vol.85, Issues 8, 2011, pp. 1580-1608. https://doi.org/10.1016/j.solener.2010.12.002
  6. Noth, A., Siegwart, R., and Engel, W., "Design of solar powered airplanes for continuous flight," Autonomous System Laboratory, 2007, Ver.1.1.
  7. Frulla, G., and Cestino, E., "Design, manufacturing and testing of a HALE-UAV structural demonstrator," Composite Structures, Vol. 83, Issues 2, 2008, pp. 143-153. https://doi.org/10.1016/j.compstruct.2007.04.008
  8. Kim, J.C., Choi, I.H., Kim, D.H., and Cheong, S.K., "Development of single crystalline silicon solar cells lay-downprocess on composites," 18th ICCM, 2011.
  9. Lee, Y.S., Kim, J.C., Lee, J.H., Choi, I.H., Kim, D.H., and Cheong, S.K., "Failure characteristics of the solar cell bonded on the CFRP laminate by co-curing process," 한국복합재료학회 추계학술대회, 2010.10, pp. 306-310.
  10. Jenny Nelson, "The physics of solar cells," Imperial College Press, 2003, pp. 177-198.
  11. Govaerts, J., Robbelein, J., Gonzalez, M., Gordon, I., and Baert, K., "Development an advanced module for back-contact solar cells," IEEE TRANSACTION ON COMPONENTS, Vol. 1, No. 9, 2011, pp. 1319-1327.
  12. Maung, K.Jason, Hahn,, H.Thomas, and Ju, Y.S., "Multifunctional integration of thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites," Solar Energy, Vol. 84, Issues 3, 2010, pp. 450-458. https://doi.org/10.1016/j.solener.2010.01.002
  13. Kim, J.C., Lee, Y.S., Lee, J.H., Choi, I.H., Kim, D.H., and Cheong, S.K., "A study on the solar cell lay-down for solar powered aircraft using secondary-bonding method," 대한기계학회 추계학술대회, 2010.11, pp. 399-403.
  14. Aberle, A.G., Wenham, S.R., and Green, M.A., "A new method for accurate measurements of the lumped series resistance of solar cells," Photovoltaic Specialists Conference, Issues 10-14, 1993, pp. 133-139.
  15. Geoffrey, A.Landis, "High-temperature solar cell development," NASA John Glenn Research Center, 2005, pp. 241-247.

Cited by

  1. Fabrication of LED Solar Simulator for the Evaluation of Large Solar Panel vol.25, pp.9, 2012, https://doi.org/10.4313/JKEM.2012.25.9.755