Effect of Ligusticum chuonxiong Hort Extracts on the Bioactivity in High-fat diet-fed Obese Rats

천궁 추출물이 고지방식이로 유도된 비만흰쥐의 생체활성에 미치는 영향

  • Heo, Ye-Young (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Ha, Bae-Jin (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University)
  • 허예영 (신라대학교 의생명과학대학 제약공학과) ;
  • 하배진 (신라대학교 의생명과학대학 제약공학과)
  • Received : 2011.08.11
  • Accepted : 2011.10.17
  • Published : 2011.12.31

Abstract

This study was performed to investigate the antioxidative effect of Ligusticum chuanxiong Hort extracts (LCE) against the hyperlipidemia of high-fat diet-fed obese rats. The rats were divided into the three groups (normal group, control group and sample group) to perform the experimental research. 1.5 ml/kg of LCE was intraperitoneally administered into the sample group for 21 days. The equal dose of 0.9% saline was intraperitoneally administered into the normal group and the control group. On day 22, they were anesthetized with ether and dissected. The levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) were examined in serum of rats. Superoxide dismutase (SOD) was measured in mitochondrial fraction. Malondialdehyde (MDA), catalase (CAT), and glutamate peroxidase (GPx) were determined in liver homogenate. High-fat diet markedly increased the levels of AST, ALT and MDA, significantly decreasing those of SOD, CAT and GPx. But Ligusticum chuanxiong Hort-pretreatment decreased the levels of AST, ALT, and MDA. increasing those of SOD, CAT and GPx. These results demonstrated the antioxidative effects, suggesting that LCE could be the candidate for the functional material.

본 연구에서는 한방에서 약용으로 사용하고 있는 미나리과에 속하는 천궁을 에탄올 추출을 사용하여 고지방식 이에 의해 유발된 고지혈 및 비만 흰쥐에서의 항산화 활성과 간 보호 효과에 미치는 영향을 관찰하였다. 고지방 식이에 의해 유도된 고지혈 및 비만 흰쥐에 있어서의 간 손상에 대한 천궁 추출물의 보호효과를 연구한 결과 고지방 식이를 먹인 흰쥐의 혈청 aspartate aminotransferase (AST)와 alanine aminotransferase (ALT)는 증가 되었고, 간조직의 균질액에서 과산화지질의 최종 산물인 MDA도 높게 나타났다. 이와 반대로 천궁 추출물을 처치한 군에서는 간 기능 지표효소의 증가를 억제시켰다. 간조직의 항산화 효소인 SOD, catalase와 GPx의 활성은 고지방식이 의해 감소되었고, 천궁 추출물의 투여로 인해 효소 활성도 가증가됨을 볼 수 있었다. 본 연구를 통해 천연물을 이용한 기반연구로서 향후 천궁의 지질개선 효과와 항산화 효과에 대한 분자생물학적 조직병리학적 후속연구가 필요하다고 사료되며 이 연구의 결과를 바탕으로 천궁의 항산화 식품이나 지질개선 기능성 식품소재로의 활용이 기대되어진다.

Keywords

References

  1. Kim JD, Lee YI, Kim BR, Choi YS, Lee SY. Effects of meju powder supplementation on lipid metabolism in rats fed hypercholesterolemic diet. J. Korean Soc. Food Sci. Nutr. 26, 314-318 (1997).
  2. Ahmed, K. A., M. Sekaran Muniandy, and I. S. Ismail. 2009. N$\varepsilon$-(Carboxymethyl)lysine and Coronary Atherosclerosis- Associated Low Density Lipoprotein Abnormalities in Type2 Diabetes: Current Status. J. Clin. Biochem. Nutr. 44, 14-27. https://doi.org/10.3164/jcbn.08-190
  3. Creager, M. A., T. F. Luscher, F. Cosentino, and J. A. Beckman. 2003. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108, 1527-1532. 18. Han, G. J., D. S. Shin, and M. https://doi.org/10.1161/01.CIR.0000091257.27563.32
  4. Kim JD, Lee YI, Kim BR, Choi YS, Lee SY. Effects of meju powder supplementation on lipid metabolism in rats fed hypercholesterolemic diet. J. Korean Soc. Food Sci. Nutr. 26, 314-318 (1997).
  5. Jialal, I. and S. Grundyl. Effects of dietary supplementation with alpha-tocopherol on the oxidative modification of low density lipoprotein. J. Lipid Res. 33, 899-906 (1992).
  6. Johnson, J. E., R. Walford, D. Harma, and J. Miquel. In `Free radicals, aging and degenerative disease', Alen R. Liss, N.Y. 1986.
  7. Kuhnau, J. The flavonoids; a class of semiessential food components; their role in human nutrition. World Rev. Nutr. Diet 24, 117-120 (1976).
  8. Vinson, J. A. and B. A. Hontz.Phenol antioxidative index: Comparative antioxidant effectiveness of red and white wines. J. Agric. Food Chem. 43, 401-403.
  9. Wong, S. F., B. Holliwell, R. Richimond, and W. R. Skowroneck. The role of superoxide and hydroxyl radical in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid. J. Inorganic Biochem. 14, 127-134. 1984. 1981. https://doi.org/10.1016/S0162-0134(00)80033-1
  10. Kim BR, Kim JD, Ham SS, Choi YS, Lee SY. Effects of spice added natto supplementation on the lipid metabolism in rats. J. Korean Soc. Food Sci. Nutr. 24, 121-126 (1995).
  11. Sung IS, Kim MJ, Cho SY. Effect of Quercus acutissima CARRUTHERS extracts on the lipid metabolism. J. Korean Soc. Food Sci. Nutr. 26, 327-333 (1997).
  12. Jang SJ, Park YJ. Effects of dietary fiber sources and levels on lipid metabolism in rats fed high lard diet. Korean J. Nutr. 28, 107-114 (1995).
  13. Spady DK, Woollett LA, Dietschy JM. Regulation of plasma LDL-cholesterol levels by dietary cholesterol and fatty acids. Annu. Rev. Nutr. 13, 355-381 (1993). https://doi.org/10.1146/annurev.nu.13.070193.002035
  14. Park KS. Metabolic syndrome. Korean Diabetes Journal 7, 37-44 (2006).
  15. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405-412 (1991). https://doi.org/10.2337/diabetes.40.4.405
  16. Plaa GL, Witschi H. Chemicals, drugs and lipid peroxidation. Annu. Rev. Pharmacol. Toxicol. 16, 125-131 (1976). https://doi.org/10.1146/annurev.pa.16.040176.001013
  17. Alordmann R, Ribierre C, Rouach H. Ethanol induced lipid peroxidation and oxidative stress in extrahepatic tissues. Alcohol. 25, 231-237 (1990).
  18. Cha JY, Kim HJ, Cho YS. Effects of water-soluble extract from leaves of Morus alba and Cudrania tricuspidata on the lipid peroxidation in tissues of rats. J. Korean Soc. Food Sci. Nutr. 29, 531-536 (2000).
  19. Sohal RS and Weindruch R. Oxidative stress, caloric retriction, and ageing. Science. 128-379 (1996).
  20. Yun ZF, Sheng Y, and Guoyao W. Free radicals, antioxidants, and Nutrition. Nutrition, 18, 872-879. (2002). https://doi.org/10.1016/S0899-9007(02)00916-4
  21. Fredovich I. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Ann. NY Acad. Sci. 893, 13- 15 (1999). https://doi.org/10.1111/j.1749-6632.1999.tb07814.x
  22. Wu G, Morris SM. Arginine metabolism. Nitric oxide and beyond. Biochem. J.; 336: 1-6.
  23. Gillette J.R. Formation of reactive metabolites of foreign compounds and their covalent binding to cellular constituents. American Physiological Society; (1977)
  24. Trackshel G, Maines MD. Characterization of glutathione Stransferase in rat kidney. Biochem. J. 252, 127-13 (1988).
  25. Hatano K, I. Nishioka and S. Iwasa. Studies on "Senkyu". I. On the sterility of Cnidium officinale Makino. Syoyakugaku Zasshi 24(2), 81-87 (1970).
  26. Lee, S.Y., M.J. Kim, D.S. Yim, K. J. Chi, and H.s. Kim. Phthalide content of Cnidium rhizome. Korean J. Phamacogn. 21, 69-73 (1990).
  27. Kobayashi, M., M. Fujita, H. Mitsuhashi. Components of Cnidium officinale Makino; occurrence of pregnenolone, coniferylferulate, ferulate and hydroxylprthalides. Chem. Pharm. Bull. 32, 3770-3773 (1984). https://doi.org/10.1248/cpb.32.3770
  28. Beauchamp, C. and Fridovich, I. : Superoxide dismutase : improved assays and an assay applicable to acrylamide gel. Anal. Biochem. 44m 276 (1971).
  29. Aebi, H., Catalase in vitro, In ; Packer L, ed methods in Enzymology, N. Y. Academic, 105, 121-126 (1984).
  30. Lawrence, R.A., Burke, R.F., Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun., 71, 952-958, 1976. https://doi.org/10.1016/0006-291X(76)90747-6
  31. Ha, B.J., Studies on the Antilipidperoxidation effect of Brazilin and Hematoxylin, doctor's degree dissertation, 1985.
  32. McPhalen, C.A., Vincent, M.G., Jansonius, J.N. X-ray structure refinement and comparison of three forms fo mitochondrial aspartate aminotransferase. J. Mol. Biol. 225, 495-517(1992). https://doi.org/10.1016/0022-2836(92)90935-D
  33. Freeman, B.A., Crapo, J.D. Biology of disease free radicals and tissue injury. Lab. Invest. 47, 412-426 (1982).
  34. Monica L. P., Oberg, j., Edlund, U.B,. Sjolom, L. and Lind, L., The dioxin-like pollutant PCB 126 (3,3',4,4',5-pentachlorobiphenyl) affects risk factors for cardiovascular disease in female rate. ToxicologyLetters. 150, 293-299 (2004).
  35. Gordon, A. F., High density lipoprotein oxidation: in vitro susceptibility and potential in vivo consequences. Biochimica et Biophysica Acta. 217-235, (2000).
  36. Vergmeyer, H.U. (eds.) Aebi, H. Catalse in methods of enzymatic analysis. New York: Academic press, 2, 673-684 (1974).
  37. Gupta, S. K., Trivedi, D., Srivastava, S., Joshi, S., Halder, N., Verma, S.D.: Lycopene Attenuates Oxidative Stress Induced Experimental Cataract Development: An In Vitro and In Vivo Study. Nutrition. 19, 794-799 (2003). https://doi.org/10.1016/S0899-9007(03)00140-0
  38. Bergmeyer, H.U., Bergmeyer, J., Grabl, M. (eds.). Abei, H. Catalase. In "Methods of enzymatic analysis" Verlag chemie 3, 273 (1983).
  39. Lawrence, R. A. and Burk, R.F.: Glutathion peroxides activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71, 952-958 (1976). https://doi.org/10.1016/0006-291X(76)90747-6