DOI QR코드

DOI QR Code

12-year LIDAR Observations of Tropospheric Aerosol over Hefei (31.9°N, 117.2°E), China

  • Wu, Decheng (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Zhou, Jun (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Liu, Dong (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Wang, Zhenzhu (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Zhong, Zhiqing (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Xie, Chenbo (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Qi, Fudi (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Fan, Aiyuan (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Wang, Yingjian (Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)
  • 투고 : 2010.12.06
  • 심사 : 2011.01.12
  • 발행 : 2011.03.25

초록

12-year LIDAR observations of tropospheric aerosol vertical distribution using a Mie scattering LIDAR in Hefei ($31.9^{\circ}N$, $117.2^{\circ}E$) from 1998 to 2009 are presented and analyzed in this paper. Characters of temporal variation and vertical distribution of tropospheric aerosol over Hefei are summarized from the LIDAR measurements. The impacts of natural source and human activities on the aerosol vertical distribution over Hefei could be seen clearly. Dust particles from the north in spring could affect the aerosol distributions below about 12 km over Hefei, and aerosol scale height in April reaches $2.29{\pm}0.68\;km$. Both LIDAR measurements and surface visibility imply that aerosols in the lower troposphere have been increasing since about 2005.

키워드

참고문헌

  1. J. Bosenberg and R. Hoff, “Plan for the implementation ofthe GAW aerosol LIDAR observation network GALION,”GAW 178 (2007).
  2. T. Nakajima, S. Yoon, V. Ramanathan, G. Shi, T. Takemura,A. Higurashi, T. Takamura, K. Aoki, B. Sohn, S. Kim, H.Tsuruta, N. Sugimoto, A. Shimizu, H. Tanimoto, Y. Sawa,N. Lin, C. Lee, D. Goto, and N. Schutgens, “Overview ofthe atmospheric brown cloud east asian regional experiment2005 and a study of the aerosol direct radiative forcing inEast Asia,” J. Geophys. Res. 112, D24S91, doi:10.1029/2007JD009009 (2007).
  3. D. M. Winker, J. Pelon, and M. P. McCormick, “TheCALIPSO mission: spaceborne LIDAR for observation ofaerosol and clouds,” Proc. SPIE 4893, 1 (2003). https://doi.org/10.1117/12.466539
  4. D. Wu, Z. Wang, B. Wang, J. Zhou, and Y. Wang, “CALIPSOvalidation using ground-based LIDAR in Hefei $(31.9^{\circ}N,\;117.2^{\circ}E)$, China,” Appl. Phys. B 102, 185-195 (2011). https://doi.org/10.1007/s00340-010-4243-z
  5. J. Zhou, G. Yu, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G.Shi, T. Nakajima, and T. Takamura, “LIDAR observationof Asian dust over Hefei, China, in spring 2000,” J.Geophys. Res. 107, 4252-4259 (2002). https://doi.org/10.1029/2001JD000802
  6. J. Zhou, D. Liu, G. Yue, F. Qi, and A. Fan, “Verticaldistribution and temporal variation of Asian dust observedover Hefei, China by using a LIDAR,” J. Korean Phys.Soc. 49, 320-326 (2006).
  7. F. G. Fernald, “Analysis of atmospheric LIDAR observation:some comments,” Appl. Opt. 23, 652-653 (1984). https://doi.org/10.1364/AO.23.000652
  8. Y. Sasano, H. Shimizu, N. Takeuchi, and M. Okuda, “Geometricalform factor in the laser radar equation: an experimentaldetermination,” Appl. Opt. 18, 2886-2890 (1979).
  9. E. J. E. Welton and J. R. Campbell, “Notes and correspondencemicropulse LIDAR signals: uncertainty analysis,”J. Atmos. Oceanic Technol. 19, 2089-2094 (2002). https://doi.org/10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2
  10. B. Liu, Z. Zhong, and J. Zhou, “Development of a Miescattering LIDAR system for measuring whole troposphericaerosol,” J. Opt A: Pure Appl. Opt. 9, 828-832 (2007). https://doi.org/10.1088/1464-4258/9/10/008
  11. G. S. Kent, M. P. McCormick, and S. K. Schaffner,“Global optical climatology of the free tropospheric aerosolfrom $1.0-{\mu}m$ satellite occultation measurements,” J. Geophys. Res. 96, 5249-5267 (1991). https://doi.org/10.1029/89JD03458
  12. Y. Sasano, “Tropospheric aerosol extinction coefficientprofiles derived from scanning LIDAR measurement overTsukuba, Japan, from 1990 to 1993,” Appl. Opt. 35,4941-4952 (1996). https://doi.org/10.1364/AO.35.004941
  13. T. Hayasaka, Y. Meguro, Y. Sasano, and T. Takamura,“Stratification and size distribution of aerosol retrievedfrom simultaneous measurements with LIDAR, a sunphotometer,and an aureolemeter,” Appl. Opt. 37, 961-970 (1998). https://doi.org/10.1364/AO.37.000961

피인용 문헌

  1. A method based on iterative morphological filtering and multiple scattering for detecting layer boundaries and extinction coefficients with LIDAR vol.23, pp.4, 2016, https://doi.org/10.1007/s10043-016-0223-9
  2. Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing vol.17, pp.4, 2017, https://doi.org/10.5194/acp-17-2509-2017
  3. Observations of aerosol color ratio and depolarization ratio over Wuhan vol.8, pp.6, 2017, https://doi.org/10.1016/j.apr.2017.04.004
  4. Mie LIDAR Observations of Tropospheric Aerosol over Wuhan vol.6, pp.12, 2015, https://doi.org/10.3390/atmos6081129
  5. Development of High Spectral Resolution Lidar System for Measuring Aerosol and Cloud vol.19, pp.6, 2015, https://doi.org/10.3807/JOSK.2015.19.6.695
  6. Seasonal characteristics of aerosol optical properties at the SKYNET Hefei site (31.90°N, 117.17°E) from 2007 to 2013 vol.119, pp.10, 2014, https://doi.org/10.1002/2014JD021500