참고문헌
- Eppig, J. J. (1993) Regulation of mammalian oocyte maturation;in The Ovary, Adashi, E. Y. and Leung, P. C. K.(eds.), Raven Press, Ltd., New York, USA.
- Saitou, M., Barton, S. C. and Surani, M. A. (2002) A molecularprogramme for the specification of germ cell fatein mice. Nature 418, 293-300. https://doi.org/10.1038/nature00927
- Molyneaux, K. A., Stallock, J., Schaible, K. and Wylie, C.(2001) Time-lapse analysis of living mouse germ cellmigration. Dev. Biol. 240, 488-498. https://doi.org/10.1006/dbio.2001.0436
- Godin, I. and Wylie, C. C. (1991) TGF beta 1 inhibits proliferationand has a chemotropic effect on mouse primordialgerm cells in culture. Development 113, 1451-1457.
- Tsafriri, A., and Dekel, N. (eds.) (1994) Molecular mechanisms in ovulation. Academic Press, San Diego, USA.
- Bornslaeger, E. A., Mattei, P. and Schultz, R. M. (1986)Involvement of cAMP-dependent protein kinase and proteinphosphorylation in regulation of mouse oocytematuration. Dev. Biol. 114, 453-462. https://doi.org/10.1016/0012-1606(86)90209-5
- Maller, J. L. and Krebs, E. G. (1977) Progesterone-stimulatedmeiotic cell division in Xenopus oocytes. Inductionby regulatory subunit and inhibition by catalytic subunitof adenosine 3':5'-monophosphate-dependent protein kinase.J. Biol. Chem. 252, 1712-1718.
- Huchon, D., Ozon, R., Fischer, E. H. and Demaille, J. G.(1981) The pure inhibitor of cAMP-dependent protein kinaseinitiates Xenopus laevis meiotic maturation. A 4-stepscheme for meiotic maturation. Mol. Cell Endocrinol. 22,211-222. https://doi.org/10.1016/0303-7207(81)90092-7
- Conti, M., Andersen, C. B., Richard, F., Mehats, C., Chun,S. Y., Horner, K., Jin, C. and Tsafriri, A. (2002) Role of cyclicnucleotide signaling in oocyte maturation. Mol. CellEndocrinol. 187, 153-159. https://doi.org/10.1016/S0303-7207(01)00686-4
- Horner, K., Livera, G., Hinckley, M., Trinh, K., Storm, D.and Conti, M. (2003) Rodent oocytes express an active adenylylcyclase required for meiotic arrest. Dev. Biol. 258, 385-396. https://doi.org/10.1016/S0012-1606(03)00134-9
- Kalinowski, R. R., Berlot, C. H., Jones, T. L., Ross, L. F.,Jaffe, L. A. and Mehlmann, L. M. (2004) Maintenance ofmeiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway. Dev. Biol. 267, 1-13. https://doi.org/10.1016/j.ydbio.2003.11.011
- Mehlmann, L. M. (2005) Oocyte-specific expression ofGpr3 is required for the maintenance of meiotic arrest inmouse oocytes. Dev. Biol. 288, 397-404. https://doi.org/10.1016/j.ydbio.2005.09.030
- Mehlmann, L. M., Jones, T. L. and Jaffe, L. A. (2002)Meiotic arrest in the mouse follicle maintained by a Gsprotein in the oocyte. Science 297, 1343-1345. https://doi.org/10.1126/science.1073978
- Han, S. J., Chen, R., Paronetto, M. P. and Conti, M. (2005)Wee1B is an oocyte-specific kinase involved in the controlof meiotic arrest in the mouse. Curr. Biol. 15, 1670-1676. https://doi.org/10.1016/j.cub.2005.07.056
- Parker, L. L., Atherton-Fessler, S. and Piwnica-Worms, H.(1992) p107wee1 is a dual-specificity kinase that phosphorylatesp34cdc2 on tyrosine 15. Proc. Natl. Acad. Sci.U.S.A. 89, 2917-2921. https://doi.org/10.1073/pnas.89.7.2917
- Kaldis, P., Russo, A. A., Chou, H. S., Pavletich, N. P. andSolomon, M. J. (1998) Human and yeast cdk-activatingkinases (CAKs) display distinct substrate specificities. Mol.Biol. Cell 9, 2545-2560. https://doi.org/10.1091/mbc.9.9.2545
- Donzelli, M. and Draetta, G. F. (2003) Regulating mammaliancheckpoints through Cdc25 inactivation. EMBORep. 4, 671-677. https://doi.org/10.1038/sj.embor.embor887
- Duckworth, B. C., Weaver, J. S. and Ruderman, J. V.(2002) G2 arrest in Xenopus oocytes depends on phosphorylationof cdc25 by protein kinase A. Proc. Natl.Acad. Sci. U.S.A. 99, 16794-16799. https://doi.org/10.1073/pnas.222661299
- Pirino, G., Wescott, M. P. and Donovan, P. J. (2009)Protein kinase A regulates resumption of meiosis by phosphorylationof Cdc25B in mammalian oocytes. Cell Cycle8, 665-670. https://doi.org/10.4161/cc.8.4.7846
- Lincoln, A. J., Wickramasinghe, D., Stein, P., Schultz, R.M., Palko, M. E., De Miguel, M. P., Tessarollo, L. andDonovan, P. J. (2002) Cdc25b phosphatase is required forresumption of meiosis during oocyte maturation. Nat. Genet. 30, 446-449. https://doi.org/10.1038/ng856
- Shitsukawa, K., Andersen, C. B., Richard, F. J., Horner, A.K., Wiersma, A., van Duin, M. and Conti, M. (2001)Cloning and characterization of the cyclic guanosinemonophosphate-inhibited phosphodiesterase PDE3A expressedin mouse oocyte. Biol. Reprod. 65, 188-196. https://doi.org/10.1095/biolreprod65.1.188
- Matten, W., Daar, I. and Vande Woude, G. F. (1994)Protein kinase A acts at multiple points to inhibit Xenopusoocyte maturation. Mol. Cell Biol. 14, 4419-4426. https://doi.org/10.1128/MCB.14.7.4419
- Masciarelli, S., Horner, K., Liu, C., Park, S. H., Hinckley,M., Hockman, S., Nedachi, T., Jin, C., Conti, M. andManganiello, V. (2004) Cyclic nucleotide phosphodiesterase3A-deficient mice as a model of female infertility. J.Clin. Invest. 114, 196-205. https://doi.org/10.1172/JCI21804
- Han, S. J., Vaccari, S., Nedachi, T., Andersen, C. B.,Kovacina, K. S., Roth, R. A. and Conti, M. (2006) Proteinkinase B/Akt phosphorylation of PDE3A and its role inmammalian oocyte maturation. EMBO J. 25, 5716-5725. https://doi.org/10.1038/sj.emboj.7601431
- Peters, J. M. (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev.Mol. Cell Biol. 7, 644-656. https://doi.org/10.1038/nrm1988
- Pesin, J. A. and Orr-Weaver, T. L. (2008) Regulation ofAPC/C activators in mitosis and meiosis. Annu. Rev. CellDev. Biol. 24, 475-499. https://doi.org/10.1146/annurev.cellbio.041408.115949
- Jin, F., Hamada, M., Malureanu, L., Jeganathan, K. B.,Zhou, W., Morbeck, D. E. and van Deursen, J. M. (2010)Cdc20 is critical for meiosis I and fertility of female mice.PLoS Genet 6, e1001147. doi:10.1371/journal.pgen.1001147.
- Reis, A., Chang, H. Y., Levasseur, M. and Jones, K. T.(2006) APCcdh1 activity in mouse oocytes prevents entryinto the first meiotic division. Nat. Cell Biol. 8, 539-540. https://doi.org/10.1038/ncb1406
- Holt, J. E., Weaver, J. and Jones, K. T. (2010) Spatial regulationof APCCdh1-induced cyclin B1 degradation maintainsG2 arrest in mouse oocytes. Development 137,1297-1304. https://doi.org/10.1242/dev.047555
- Schindler, K. and Schultz, R. M. (2009) CDC14B actsthrough FZR1 (CDH1) to prevent meiotic maturation ofmouse oocytes. Biol. Reprod. 80, 795-803. https://doi.org/10.1095/biolreprod.108.074906
- Yew, N., Mellini, M. L. and Vande Woude, G. F. (1992)Meiotic initiation by the mos protein in Xenopus. Nature355, 649-652. https://doi.org/10.1038/355649a0
- Fulka, J., Jr., Motlik, J., Fulka, J. and Jilek, F. (1986) Effectof cycloheximide on nuclear maturation of pig and mouseoocytes. J. Reprod. Fertil. 77, 281-285. https://doi.org/10.1530/jrf.0.0770281
- Mendez, R. and Richter, J. D. (2001) Translational controlby CPEB: a means to the end. Nat. Rev. Mol. Cell Biol. 2,521-529. https://doi.org/10.1038/35080081
- Ule, J. and Darnell, R. B. (2006) RNA binding proteinsand the regulation of neuronal synaptic plasticity. Curr.Opin. Neurobiol. 16, 102-110. https://doi.org/10.1016/j.conb.2006.01.003
- Audic, Y. and Hartley, R. S. (2004) Post-transcriptionalregulation in cancer. Biol. Cell 96, 479-498. https://doi.org/10.1016/j.biolcel.2004.05.002
- Baroux, C., Autran, D., Gillmor, C. S., Grimanelli, D. andGrossniklaus, U. (2008) The maternal to zygotic transitionin animals and plants. Cold Spring Harb. Symp. Quant.Biol. 73, 89-100. https://doi.org/10.1101/sqb.2008.73.053
- Sonenberg, N. and Hinnebusch, A. G. (2009) Regulationof translation initiation in eukaryotes: mechanisms and biologicaltargets. Cell 136, 731-745. https://doi.org/10.1016/j.cell.2009.01.042
- Matsuo, H., Li, H., McGuire, A. M., Fletcher, C. M., Gingras, A. C., Sonenberg, N. and Wagner, G. (1997)Structure of translation factor eIF4E bound to m7GDP andinteraction with 4E-binding protein. Nat. Struct. Biol. 4,717-724. https://doi.org/10.1038/nsb0997-717
- Tschopp, C., Knauf, U., Brauchle, M., Zurini, M., Ramage,P., Glueck, D., New, L., Han, J. and Gram, H. (2000)Phosphorylation of eIF-4E on Ser 209 in response to mitogenicand inflammatory stimuli is faithfully detected byspecific antibodies. Mol. Cell Biol. Res. Commun. 3, 205-211. https://doi.org/10.1006/mcbr.2000.0217
- Whalen, S. G., Gingras, A. C., Amankwa, L., Mader, S.,Branton, P. E., Aebersold, R. and Sonenberg, N. (1996)Phosphorylation of eIF-4E on serine 209 by protein kinaseC is inhibited by the translational repressors, 4E-bindingproteins. J. Biol. Chem. 271, 11831-11837. https://doi.org/10.1074/jbc.271.20.11831
- Joshi, B., Cai, A. L., Keiper, B. D., Minich, W. B., Mendez,R., Beach, C. M., Stepinski, J., Stolarski, R., Darzynkiewicz,E. and Rhoads, R. E. (1995) Phosphorylation of eukaryoticprotein synthesis initiation factor 4E at Ser-209. J. Biol.Chem. 270, 14597-14603. https://doi.org/10.1074/jbc.270.24.14597
- Ueda, T., Watanabe-Fukunaga, R., Fukuyama, H., Nagata,S. and Fukunaga, R. (2004) Mnk2 and Mnk1 are essentialfor constitutive and inducible phosphorylation of eukaryoticinitiation factor 4E but not for cell growth or development.Mol. Cell Biol. 24, 6539-6549. https://doi.org/10.1128/MCB.24.15.6539-6549.2004
- McKendrick, L., Morley, S. J., Pain, V. M., Jagus, R. andJoshi, B. (2001) Phosphorylation of eukaryotic initiationfactor 4E (eIF4E) at Ser209 is not required for protein synthesisin vitro and in vivo. Eur. J. Biochem. 268, 5375-5385. https://doi.org/10.1046/j.0014-2956.2001.02478.x
- Lachance, P. E., Miron, M., Raught, B., Sonenberg, N. andLasko, P. (2002) Phosphorylation of eukaryotic translationinitiation factor 4E is critical for growth. Mol. Cell Biol.22, 1656-1663. https://doi.org/10.1128/MCB.22.6.1656-1663.2002
- Zhang, Y., Li, Y. and Yang, D. Q. (2008) Phosphorylationof eIF-4E positively regulates formation of the eIF-4F translationinitiation complex following DNA damage. Biochem.Biophys. Res. Commun. 367, 54-59. https://doi.org/10.1016/j.bbrc.2007.12.118
- Pyronnet, S., Imataka, H., Gingras, A. C., Fukunaga, R.,Hunter, T. and Sonenberg, N. (1999) Human eukaryotictranslation initiation factor 4G (eIF4G) recruits mnk1 tophosphorylate eIF4E. EMBO J. 18, 270-279. https://doi.org/10.1093/emboj/18.1.270
- Mader, S., Lee, H., Pause, A. and Sonenberg, N. (1995)The translation initiation factor eIF-4E binds to a commonmotif shared by the translation factor eIF-4 gamma and thetranslational repressors 4E-binding proteins. Mol. CellBiol. 15, 4990-4997. https://doi.org/10.1128/MCB.15.9.4990
- Dostie, J., Ferraiuolo, M., Pause, A., Adam, S. A. andSonenberg, N. (2000) A novel shuttling protein, 4E-T, mediatesthe nuclear import of the mRNA 5' cap-binding protein,eIF4E. EMBO J. 19, 3142-3156. https://doi.org/10.1093/emboj/19.12.3142
- Heesom, K. J. and Denton, R. M. (1999) Dissociation ofthe eukaryotic initiation factor-4E/4E-BP1 complex involvesphosphorylation of 4E-BP1 by an mTOR-associatedkinase. FEBS Lett. 457, 489-493. https://doi.org/10.1016/S0014-5793(99)01094-7
- Lapasset, L., Pradet-Balade, B., Verge, V., Lozano, J. C.,Oulhen, N., Cormier, P. and Peaucellier, G. (2008) CyclinB synthesis and rapamycin-sensitive regulation of proteinsynthesis during starfish oocyte meiotic divisions. Mol.Reprod. Dev. 75, 1617-1626. https://doi.org/10.1002/mrd.20905
- Messina, V., Di Sauro, A., Pedrotti, S., Adesso, L., Latina,A., Geremia, R., Rossi, P. and Sette, C. (2010) Differentialcontribution of the MTOR and MNK pathways to the regulationof mRNA translation in meiotic and postmeioticmouse male germ cells. Biol. Reprod. 83, 607-615. https://doi.org/10.1095/biolreprod.110.085050
- Henderson, M. A., Cronland, E., Dunkelbarger, S., Contreras,V., Strome, S. and Keiper, B. D. (2009) A germline-specific isoform of eIF4E (IFE-1) is required for efficienttranslation of stored mRNAs and maturation of bothoocytes and sperm. J. Cell Sci. 122, 1529-1539. https://doi.org/10.1242/jcs.046771
- Villaescusa, J. C., Allard, P., Carminati, E., Kontogiannea,M., Talarico, D., Blasi, F., Farookhi, R. and Verrotti, A. C.(2006) Clast4, the murine homologue of human eIF4E-Transporter,is highly expressed in developing oocytesand post-translationally modified at meiotic maturation.Gene 367, 101-109. https://doi.org/10.1016/j.gene.2005.09.026
- Zappavigna, V., Piccioni, F., Villaescusa, J. C. and Verrotti,A. C. (2004) Cup is a nucleocytoplasmic shuttling proteinthat interacts with the eukaryotic translation initiation factor4E to modulate Drosophila ovary development. Proc.Natl. Acad. Sci. U.S.A. 101, 14800-14805. https://doi.org/10.1073/pnas.0406451101
- Piccioni, F., Zappavigna, V. and Verrotti, A. C. (2005) Acup full of functions. RNA Biol. 2, 125-128. https://doi.org/10.4161/rna.2.4.2416
- Minshall, N., Reiter, M. H., Weil, D. and Standart, N.(2007) CPEB interacts with an ovary-specific eIF4E and4E-T in early Xenopus oocytes. J. Biol. Chem. 282, 37389-37401. https://doi.org/10.1074/jbc.M704629200
- Xu, X., Vatsyayan, J., Gao, C., Bakkenist, C. J. and Hu, J.(2010) HDAC2 promotes eIF4E sumoylation and activatesmRNA translation gene specifically. J. Biol. Chem. 285,18139-18143. https://doi.org/10.1074/jbc.C110.131599
- Wang, Z. B., Ou, X. H., Tong, J. S., Li, S., Wei, L.,Ouyang, Y. C., Hou, Y., Schatten, H. and Sun, Q. Y.(2010) The SUMO pathway functions in mouse oocytematuration. Cell Cycle 9, 2638-2644.
- Radford, H. E., Meijer, H. A. and de Moor, C. H. (2008)Translational control by cytoplasmic polyadenylation inXenopus oocytes. Biochim. Biophys. Acta. 1779, 217-229. https://doi.org/10.1016/j.bbagrm.2008.02.002
- Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R.and Richter, J. D. (1999) Maskin is a CPEB-associated factorthat transiently interacts with elF-4E. Mol. Cell 4,1017-1027. https://doi.org/10.1016/S1097-2765(00)80230-0
- Cao, Q. and Richter, J. D. (2002) Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 21, 3852-3862. https://doi.org/10.1093/emboj/cdf353
- Hake, L. E. and Richter, J. D. (1994) CPEB is a specificityfactor that mediates cytoplasmic polyadenylation duringXenopus oocyte maturation. Cell 79, 617-627. https://doi.org/10.1016/0092-8674(94)90547-9
- Stebbins-Boaz, B., Hake, L. E. and Richter, J. D. (1996)CPEB controls the cytoplasmic polyadenylation of cyclin,Cdk2 and c-mos mRNAs and is necessary for oocyte maturationin Xenopus. EMBO J. 15, 2582-2592.
- Andresson, T. and Ruderman, J. V. (1998) The kinase Eg2is a component of the Xenopus oocyte progesterone-activatedsignaling pathway. EMBO J. 17, 5627-5637. https://doi.org/10.1093/emboj/17.19.5627
- Mendez, R., Murthy, K. G., Ryan, K., Manley, J. L. andRichter, J. D. (2000) Phosphorylation of CPEB by Eg2 mediatesthe recruitment of CPSF into an active cytoplasmicpolyadenylation complex. Mol. Cell 6, 1253-1259. https://doi.org/10.1016/S1097-2765(00)00121-0
- Mendez, R., Hake, L. E., Andresson, T., Littlepage, L. E.,Ruderman, J. V. and Richter, J. D. (2000) Phosphorylationof CPE binding factor by Eg2 regulates translation of c-mosmRNA. Nature 404, 302-307. https://doi.org/10.1038/35005126
- Kim, J. H. and Richter, J. D. (2006) Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation.Mol. Cell 24, 173-183. https://doi.org/10.1016/j.molcel.2006.08.016
- Hodgman, R., Tay, J., Mendez, R. and Richter, J. D.(2001) CPEB phosphorylation and cytoplasmic polyadenylationare catalyzed by the kinase IAK1/Eg2 in maturingmouse oocytes. Development 128, 2815-2822.
- Racki, W. J. and Richter, J. D. (2006) CPEB controls oocytegrowth and follicle development in the mouse.Development 133, 4527-4537. https://doi.org/10.1242/dev.02651
- Nishimura, Y., Endo, T., Kano, K. and Naito, K. (2009)Porcine Aurora A accelerates Cyclin B and Mos synthesisand promotes meiotic resumption of porcine oocytes.Anim. Reprod. Sci. 113, 114-124. https://doi.org/10.1016/j.anireprosci.2008.05.074
- Yao, L. J., Zhong, Z. S., Zhang, L. S., Chen, D. Y.,Schatten, H. and Sun, Q. Y. (2004) Aurora-A is a criticalregulator of microtubule assembly and nuclear activity inmouse oocytes, fertilized eggs, and early embryos. Biol.Reprod. 70, 1392-1399. https://doi.org/10.1095/biolreprod.103.025155
- Atkins, C. M., Nozaki, N., Shigeri, Y. and Soderling, T. R.(2004) Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J. Neurosci. 24, 5193-5201. https://doi.org/10.1523/JNEUROSCI.0854-04.2004
- Su, Y. Q. and Eppig, J. J. (2002) Evidence that multifunctionalcalcium/calmodulin-dependent protein kinase II(CaM KII) participates in the meiotic maturation of mouseoocytes. Mol. Reprod. Dev. 61, 560-569. https://doi.org/10.1002/mrd.10034
- Kozak, M. (2006) Rethinking some mechanisms invokedto explain translational regulation in eukaryotes. Gene382, 1-11. https://doi.org/10.1016/j.gene.2006.06.004
- de Moor, C. H., Meijer, H. and Lissenden, S. (2005)Mechanisms of translational control by the 3' UTR in developmentand differentiation. Semin. Cell Dev. Biol. 16,49-58. https://doi.org/10.1016/j.semcdb.2004.11.007
- Hao, Z., Stoler, M. H., Sen, B., Shore, A., Westbrook, A.,Flickinger, C. J., Herr, J. C. and Coonrod, S. A. (2002)TACC3 expression and localization in the murine egg andovary. Mol. Reprod. Dev. 63, 291-299. https://doi.org/10.1002/mrd.90012
- Groisman, I., Huang, Y. S., Mendez, R., Cao, Q.,Theurkauf, W. and Richter, J. D. (2000) CPEB, maskin,and cyclin B1 mRNA at the mitotic apparatus: implicationsfor local translational control of cell division.Cell 103, 435-447. https://doi.org/10.1016/S0092-8674(00)00135-5
- Meijer, H. A., Radford, H. E., Wilson, L. S., Lissenden, S.and de Moor, C. H. (2007) Translational control of maskinmRNA by its 3' untranslated region. Biol. Cell 99, 239-250. https://doi.org/10.1042/BC20060112
- Kawahara, H., Imai, T., Imataka, H., Tsujimoto, M.,Matsumoto, K. and Okano, H. (2008) Neural RNA-bindingprotein Musashi1 inhibits translation initiation bycompeting with eIF4G for PABP. J. Cell Biol. 181,639-653. https://doi.org/10.1083/jcb.200708004
- Kee, K., Angeles, V. T., Flores, M., Nguyen, H. N. andReijo Pera, R. A. (2009) Human DAZL, DAZ and BOULEgenes modulate primordial germ-cell and haploid gameteformation. Nature 462, 222-225. https://doi.org/10.1038/nature08562
- Collier, B., Gorgoni, B., Loveridge, C., Cooke, H. J. andGray, N. K. (2005) The DAZL family proteins arePABP-binding proteins that regulate translation in germcells. EMBO J. 24, 2656-2666. https://doi.org/10.1038/sj.emboj.7600738
- Morton, S., Yang, H. T., Moleleki, N., Campbell, D. G.,Cohen, P. and Rousseau, S. (2006) Phosphorylation of theARE-binding protein DAZAP1 by ERK2 induces its dissociationfrom DAZ. Biochem. J. 399, 265-273. https://doi.org/10.1042/BJ20060681
- Urano, J., Fox, M. S. and Reijo Pera, R. A. (2005) Interactionof the conserved meiotic regulators, BOULE (BOL)and PUMILIO-2 (PUM2). Mol. Reprod. Dev. 71, 290-298. https://doi.org/10.1002/mrd.20270
- Liu, J., Linher, K. and Li, J. (2009) Porcine DAZL messengerRNA: its expression and regulation during oocytematuration. Mol. Cell Endocrinol. 311, 101-108. https://doi.org/10.1016/j.mce.2009.06.003
- Kuge, H., Brownlee, G. G., Gershon, P. D. and Richter, J.D. (1998) Cap ribose methylation of c-mos mRNA stimulatestranslation and oocyte maturation in Xenopuslaevis. Nucleic Acids Res. 26, 3208-3214. https://doi.org/10.1093/nar/26.13.3208
- Kuge, H. and Richter, J. D. (1995) Cytoplasmic 3' poly(A)addition induces 5' cap ribose methylation: implicationsfor translational control of maternal mRNA. EMBO J. 14,6301-6310.
- Gillian-Daniel, D. L., Gray, N. K., Astrom, J., Barkoff, A.and Wickens, M. (1998) Modifications of the 5' cap ofmRNAs during Xenopus oocyte maturation: independencefrom changes in poly(A) length and impact on translation.Mol. Cell Biol. 18, 6152-6163. https://doi.org/10.1128/MCB.18.10.6152
- Bachvarova, R., De Leon, V., Johnson, A., Kaplan, G. andPaynton, B. V. (1985) Changes in total RNA, polyadenylatedRNA, and actin mRNA during meiotic maturation ofmouse oocytes. Dev. Biol. 108, 325-331. https://doi.org/10.1016/0012-1606(85)90036-3
- Paynton, B. V., Rempel, R. and Bachvarova, R. (1988)Changes in state of adenylation and time course of degradationof maternal mRNAs during oocyte maturation andearly embryonic development in the mouse. Dev. Biol.129, 304-314. https://doi.org/10.1016/0012-1606(88)90377-6
- Parker, R. and Song, H. (2004) The enzymes and controlof eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11,121-127. https://doi.org/10.1038/nsmb724
- Flemr, M., Ma, J., Schultz, R. M. and Svoboda, P. (2010)P-body loss is concomitant with formation of a messengerRNA storage domain in mouse oocytes. Biol. Reprod. 82,1008-1017. https://doi.org/10.1095/biolreprod.109.082057
- Paynton, B. V. and Bachvarova, R. (1994) Polyadenylationand deadenylation of maternal mRNAs during oocytegrowth and maturation in the mouse. Mol. Reprod. Dev.37, 172-180. https://doi.org/10.1002/mrd.1080370208
- Yekta, S., Shih, I. H. and Bartel, D. P. (2004) MicroRNA-directedcleavage of HOXB8 mRNA. Science 304, 594-596. https://doi.org/10.1126/science.1097434
- Fabian, M. R., Sonenberg, N. and Filipowicz, W. (2010)Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351-379. https://doi.org/10.1146/annurev-biochem-060308-103103
- Tam, O. H., Aravin, A. A., Stein, P., Girard, A., Murchison,E. P., Cheloufi, S., Hodges, E., Anger, M., Sachidanandam,R., Schultz, R. M. and Hannon, G. J. (2008) Pseudogene-derivedsmall interfering RNAs regulate gene expressionin mouse oocytes. Nature 453, 534-538. https://doi.org/10.1038/nature06904
- Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., Chiba, H., Kohara, Y., Kono, T., Nakano, T., Surani, M. A., Sakaki, Y. and Sasaki, H. (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539-543. https://doi.org/10.1038/nature06908
- Murchison, E. P., Stein, P., Xuan, Z., Pan, H., Zhang, M.Q., Schultz, R. M. and Hannon, G. J. (2007) Critical rolesfor Dicer in the female germline. Genes Dev. 21, 682-693. https://doi.org/10.1101/gad.1521307
- Suh, N., Baehner, L., Moltzahn, F., Melton, C., Shenoy,A., Chen, J. and Blelloch, R. (2010) MicroRNA function isglobally suppressed in mouse oocytes and early embryos. Curr. Biol. 20, 271-277. https://doi.org/10.1016/j.cub.2009.12.044
- Goodfellow, I. G. and Roberts, L. O. (2008) Eukaryotic initiationfactor 4E. Int. J. Biochem. Cell Biol. 40, 2675-2680. https://doi.org/10.1016/j.biocel.2007.10.023
- Rhoads, R. E. (2009) eIF4E: new family members, newbinding partners, new roles. J. Biol. Chem. 284, 16711-16715. https://doi.org/10.1074/jbc.R900002200
- Wang, S., Kou, Z., Jing, Z., Zhang, Y., Guo, X., Dong,M., Wilmut, I. and Gao, S. (2010) Proteome of mouse oocytesat different developmental stages. Proc. Natl. Acad.Sci. U.S.A. 107, 17639-17644. https://doi.org/10.1073/pnas.1013185107
피인용 문헌
- Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle 2017, https://doi.org/10.1002/wdev.294
- Folic acid facilitates in vitro maturation of mouse and Xenopus laevis oocytes vol.109, pp.08, 2013, https://doi.org/10.1017/S0007114512003248
- Transcriptional Analysis of a Unique Set of Genes Involved in Schistosoma mansoni Female Reproductive Biology vol.6, pp.11, 2012, https://doi.org/10.1371/journal.pntd.0001907
- Transmembrane Signal Transduction in Oocyte Maturation and Fertilization: Focusing on Xenopus laevis as a Model Animal vol.16, pp.1, 2015, https://doi.org/10.3390/ijms16010114
- Embryotropic actions of follistatin: paracrine and autocrine mediators of oocyte competence and embryo developmental progression vol.26, pp.1, 2014, https://doi.org/10.1071/RD13282
- Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish vol.279, 2017, https://doi.org/10.1016/j.toxlet.2017.07.888
- The subcortical maternal complex: multiple functions for one biological structure? vol.33, pp.11, 2016, https://doi.org/10.1007/s10815-016-0788-z
- The value of growth hormone supplements in ART for poor ovarian responders vol.96, pp.5, 2011, https://doi.org/10.1016/j.fertnstert.2011.09.049
- Increased expression of ERp57 in rat oocytes during meiotic maturation is associated with sperm-egg fusion vol.81, pp.4, 2014, https://doi.org/10.1002/mrd.22300
- Aquaporin7 plays a crucial role in tolerance to hyperosmotic stress and in the survival of oocytes during cryopreservation vol.5, pp.1, 2015, https://doi.org/10.1038/srep17741
- Pre- and Postovulatory Aging of Murine Oocytes Affect the Transcript Level and Poly(A) Tail Length of Maternal Effect Genes vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0108907
- Selfish cellular networks and the evolution of complex organisms vol.335, pp.3, 2012, https://doi.org/10.1016/j.crvi.2012.01.003
- Genome annotation for clinical genomic diagnostics: strengths and weaknesses vol.9, pp.1, 2017, https://doi.org/10.1186/s13073-017-0441-1
- The Extracellular Calcium-Sensing Receptor (CASR) Regulates Gonadotropins-Induced Meiotic Maturation of Porcine Oocytes1 vol.93, pp.6, 2015, https://doi.org/10.1095/biolreprod.115.128579
- Regulation of GVBD in mouse oocytes by miR-125a-3p and Fyn kinase through modulation of actin filaments vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02071-x
- Epigenetic inheritance through the female germ-line: The known, the unknown, and the possible vol.43, 2015, https://doi.org/10.1016/j.semcdb.2015.07.003
- A census of human RNA-binding proteins vol.15, pp.12, 2014, https://doi.org/10.1038/nrg3813
- Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes vol.11, pp.9, 2016, https://doi.org/10.1371/journal.pone.0162722
- RNA-binding proteins, RNA granules, and gametes: is unity strength? vol.142, pp.6, 2011, https://doi.org/10.1530/REP-11-0257
- The effect of peri-conception hyperglycaemia and the involvement of the hexosamine biosynthesis pathway in mediating oocyte and embryo developmental competence vol.81, pp.5, 2014, https://doi.org/10.1002/mrd.22299
- A graphical systems model and tissue-specific functional gene sets to aid transcriptomic analysis of chemical impacts on the female teleost reproductive axis vol.746, pp.2, 2012, https://doi.org/10.1016/j.mrgentox.2011.12.016
- Ovarian follicle development in vitro and oocyte competence: advances and challenges for farm animals vol.55, 2016, https://doi.org/10.1016/j.domaniend.2015.12.006
- The CPEB-family of proteins, translational control in senescence and cancer vol.11, pp.4, 2012, https://doi.org/10.1016/j.arr.2012.03.004
- A systematic computational analysis of the rRNA–3′ UTR sequence complementarity suggests a regulatory mechanism influencing post-termination events in metazoan translation vol.22, pp.7, 2016, https://doi.org/10.1261/rna.056119.116
- CPEB2 Is Necessary for Proper Porcine Meiotic Maturation and Embryonic Development vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103138
- Requirement of the 3′-UTR-dependent suppression of DAZL in oocytes for pre-implantation mouse development vol.14, pp.6, 2018, https://doi.org/10.1371/journal.pgen.1007436
- Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions vol.9, pp.4, 2018, https://doi.org/10.1002/wrna.1473
- SUMOylation regulates germinal vesicle breakdown and the Akt/PKB pathway during mouse oocyte maturation vol.315, pp.1, 2018, https://doi.org/10.1152/ajpcell.00038.2018
- CNOT6 regulates a novel pattern of mRNA deadenylation during oocyte meiotic maturation vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-25187-0