초록
혼합분포를 가정한 신용평가 연구에서 ROC 곡선은 부도와 정상 차주의 판별력을 탐색하는데 유용한 그림이다. ROC 곡선을 개선하여 스코어를 파악할 수 있는 AROC 곡선을 수리적으로 분석하고, 정규분포를 적용하여 다양한 곡선의 형태를 파악한다. 최적분류점을 발견하는 다양한 분류정확도 통계량과 AROC 곡선의 관계를 발견하고, 두 분포의 분산이 동일한 경우에 AROC 곡선의 극소점으로 최적의 분류점을 추정할 수 있음을 발견한다.
In the credit evaluation study with the assumption of mixture distributions, the ROC curve is a useful method to explore the discriminatory power of default and non-default borrowers. The AROC curve is an adjusted ROC curve that can be identified with the corresponding score and is mathematically analyzed in this work. We obtain patterns of this curve by applying normal distributions. Moreover, the relationship between the AROC curve and many classification accuracy statistics are explored to find the optimal threshold. In the case of equivalent variances of two distributions, we obtain that the local minimum of the AROC curve is estimated at the optimal threshold to maximize certain classification accuracies.