DOI QR코드

DOI QR Code

부상관함수의 적응적 결합에 기반한 다중 대역 Sine 위상 BOC 신호 동기화 기법

Synchronization Technique Based on Adaptive Combining of Sub-correlations of Multiband Sine Phased BOC Signals

  • 박종인 (성균관대학교 정보통신공학부) ;
  • 이영포 (성균관대학교 정보통신공학부) ;
  • 윤석호 (성균관대학교 정보통신공학부) ;
  • 김선용 (건국대학교 전자공학부) ;
  • 이예훈 (서울과학기술대학교 전자정보공학과)
  • 투고 : 2011.11.08
  • 발행 : 2011.11.30

초록

본 논문에서는 하나의 수신기로 다중 대역 sine 위상 binary offset carrier (BOC) 신호를 이용할 수 있도록 부상관함수의 적응적 결합에 기반한 다중 대역 sine 위상 BOC 신호 동기화 기법을 제안한다. 구체적으로는 BOC 자기상관함수를 이루고 있는 다수의 부상관함수들을 생성하고, 이를 적응적으로 재결합함으로써 주변첨두가 없는 새로운 상관함수를 획득한다. 마지막으로 delay lock loop에서 사용되는 자기상관함수를 제안한 상관함수로 대체함으로써 주변첨두로 인한 false lock 문제를 해결한다. 제안한 동기화 기법은 모든 sine 위상 BOC 신호에 적용가능하며, 모의실험 결과를 통해 제안한 기법이 기존의 기법들에 비해 더 좋은 tracking error standard deviation(TESD) 성능을 가지는 것을 보인다.

This paper addresses a synchronization technique based on an adaptive combining of the sub-correlation functions obtained from multiband sine phased binary offset carrier (BOC) signals, allowing a BOC signal receiver to deal with multiband sine phased BOC signals. Specifically, we first obtain the sub-correlation functions composing the BOC autocorrelation function, and then, re-combine the sub-correlation functions generating a correlation function with no side-peak. Finally, by replacing the BOC autocorrelation with the correlation function with no side-peak in the delay lock loop, the proposed scheme performs unambiguous signal tracking. The proposed synchronization scheme is applicable to generic sine phased BOC signals. Numerical results demonstrate that the proposed scheme provides a performance improvement over the conventional unambiguous schemes in terms of the tracking error standard deviation.

키워드

참고문헌

  1. G. Sato, T. Asai, T. Sakamoto, and T. Hase, "hnprovement of the positioning accuracy of a software-based GPS receiver using a 32-bit embedded microprocessor," IEEE Trans. Consumer Electron., vol. 46, no. 3, pp. 521-530, Aug. 2000. https://doi.org/10.1109/30.883405
  2. A. Rabaeijs, D. Grosso, X. Huang, and D. Qi, "GPS receiver prototype for integration into system-on-chip," IEEE Trans. Consumer Electron., vol. 49, no. 1, pp. 48-58, Feb. 2003. https://doi.org/10.1109/TCE.2003.1205455
  3. J.-C. Juang and Y.-H. Chen, "Accounting for data intermittency in a software GNSS receiver," IEEE Trans. Consumer Electron., vol. 55, no. 2, pp. 327-333, May 2009. https://doi.org/10.1109/TCE.2009.5174389
  4. J. W. Betz, "Binary offset carrier modulations for radionavigation," Journal of the Inst. Navig., vol. 48, no. 4, pp. 227-246, Winter 2001-2002. https://doi.org/10.1002/j.2161-4296.2001.tb00247.x
  5. E. S. Lohan, A. Lakhzouri, and M. Renfors, "Binary-offset-carrier modulation teclmiques with applications in satellite navigation systems," Wireless Commun. Mobile Computing, vol. 7, no. 6, pp. 767-779, Aug. 2007. https://doi.org/10.1002/wcm.407
  6. J. A. Avila-Rodriguez, "On generalized signal waveforms for satellite navigation," Ph.D. dissertation, Dept. Aerospace Engineer., University of Munich, Munich, Germany, 2008.
  7. O. Julien, C. Macabiau, M. E. Cannon, and G. Lachapelle, "ASPeCT: unambiguous sine-BOC (n,n) acquisition / tracking teclmique for navigation applications," IEEE Trans. Aerospace and Electron. Syst., vol. 43, no. 1, pp. 150-162, Jan. 2007. https://doi.org/10.1109/TAES.2007.357123
  8. A. Burian, E. S. Lohan, and M. K. Renfor, "Efficient delay tracking methods with sidelobes cancellation for BOC-modulated signals," EURASIP Journal on Wireless Commun. Network., vol. 2007, article ID. 72626, 2007.
  9. S. Kim, D. Chong, and S. Yoon, "A new GNSS synchronization scheme," in Proc. Vehic. Technol. Conf.. (VTC), CD-ROM, Barcelona, Spain, Apr. 2009.
  10. Z. Yao, M. Lu, and Z. Feng, "Unambiguous sine-phased binary offset carrier modulated signal acquisition teclmique," IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 577-580, Feb. 2010. https://doi.org/10.1109/TWC.2010.02.091066
  11. Z. Yao, X. Cui, M. Lu, Z. Feng, and J. Yang, "Pseudo-correIa tion-function -based unambiguous tracking teclmique for sine-BOC signals," IEEE Trans. Aerospace and Electron. Syst., vol. 46, no. 4, pp. 1782-1796, Oct. 2010. https://doi.org/10.1109/TAES.2010.5595594
  12. B. W. Parkinson and J. J. Spilker Jr., Global Positioning System: Theory and Applications, American Institute of Aeronautics and Astronautics, 1996.
  13. L. Ries, L. Lestarquit, E. Artnengou-Miret, F. Legrand, and W. Vigneau, "A software simulation tool for GNSS2 BOC signals analysis," in Proc. ION GPS, pp. 2225-2239, Portland, OR, Sep. 2002.
  14. F. D. Nunes, M. G. Sousa, and J. M. N. Leitao, "Gating functions for multipath mitigation in GNSS BOC signals," IEEE Trans. Aerospace and Electron. Syst., vol. 43, no. 3, pp. 951-964, July 2007. https://doi.org/10.1109/TAES.2007.4383585