DOI QR코드

DOI QR Code

EST기반 변조에서 8 PSK와 16 QAM 에 대한 신호 검출

Signal Detection for 8 PSK and 16 QAM in EST-Based Modulation

  • 권병욱 (연세대학교 전기전자공학부 무선통신(WCL)연구실) ;
  • 황태원 (연세대학교 전기전자공학부 무선통신(WCL)연구실)
  • 투고 : 2011.11.01
  • 발행 : 2011.11.30

초록

EST (Energy Spreading Transfonn) 기반의 변조는 광대역 무선통신에서 주파수 선택적 fading을 방지하는 효과적인 기술이다. 이 기법은 liner decoder의 복잡도를 가지면서 ISI (Inter-Symbol Interference)-free MFB (Matched Filter Bound) 에 근접한 성능을 나타낸다. EST 기반의 변조는 원래 QPSK에 대해 제안되었다. 하지만, 다중 fading 채널의 capacity를 최대한 이용하기 위해서 higher-order의 변조방식이 필요하다. 본 논문에서는 QPSK 에 대해 제안되었던 기존 EST 기반 변조를 재검토하고, 이를 8 PSK와 16 QAM으로 확장하는 것을 논의한다. 확장한 시스템의 성능은 Proakis B 채널과 8-tap fa이ng 채널에서의 가상실험을 통해 검증되었다. 8 PSK로 확장한 EST기반의 시스템은 MFB에 매우 근접한 성능을 보여주었지만 16 QAM으로 확장한 EST기반의 시스템은 MFB와의 성능 차이를 보여주었다.

Energy spreading transform (EST) based modulation is an effective technique to combat frequency-selective fading in broadband wireless communication. It performs close to the inter-symbol interference (ISI)-free matched filter bound (MFB) only at the complexity of a linear detector. Originally, EST-based modulation has been proposed for QPSK. However, to fully utilize the capacity of multipath fading channels, higher-order modulations are also necessary. In this paper, we review the EST based modulation that has originally been proposed for QPSK and discuss its extension to 8 PSK and 16 QAM. The performance of the extended system is verified through simulation in Proakis B and 8-tap fading channel. The EST based modulation for 8 PSK shows the performance which is very close to MFB and the EST based modulation for 16 QAM shows the performance gap between its receiver and MFB.

키워드

참고문헌

  1. T. Hwang and Y. (G.) Li, "Optimum filtering for energy-spreading transform-based equalization, ' , IEEE Trans. Signal Process., vol.55, no.3, pp.1182-1187, Mar. 2007. https://doi.org/10.1109/TSP.2006.887143
  2. S. Weinstein and P. Ebert, "Data transmission by frequency-division multiplexing using the discrete Fourier transform, " IEEE Trans. Commun. Technol., vol. COM-19, no.5, pp.628-634, Oct. 1971.
  3. L. J. Cimini, Jr., "Analysis and simulation of a digital mobile channel using orthogonal frequency divisio- multiplexing," IEEE Trans. Commun., vol. COM-33, no. 7, pp. 665-675, Jul. 1985.
  4. Y. (G.) Li and G. Stuber, Orthogonal Frequency Division Multiplexing for Wireless Communications, Boston, MA: Springer, 2006.
  5. T. Hwang, C. Yang, G. Wu, S. Li, and Y. (G.) Li, "OFDM and Its Wireless Applications: A Survey," IEEE Trans. Veh. Technol., vol-58, no.-4, PP.-1673-1694 , May 2009. https://doi.org/10.1109/TVT.2008.2004555
  6. D. Falconer, S. L. Ariyavisitakul, A. BenyaminSeeyar, and B. Eidson, "Frequency-domain equalization for single-carrier broadband wireless systems," IEEE Commun. Mag., vol. 40, no. 4, pp. 58-66, Apr. 2002. https://doi.org/10.1109/35.995852
  7. A. J. Goldsmith and S. Chua, "Variable-Rate Variable-Power MQAM for Fading Channels," IEEE Trans. Commun., vol. 45, no. 10, pp. 1218-1230, Oct. 1997. https://doi.org/10.1109/26.634685
  8. S. T. Chung and A. J. Goldsmith, "Degrees of Freedom in Adaptive Modulation: A Unified View," IEEE Trans. Commun., vol. 49, no. 9, pp. 1561-1571, Sep. 2001. https://doi.org/10.1109/26.950343
  9. H. K. Mohammed, R. Tripathi, and K. Kant, "Performance of Adaptive Modulation in Multipath Fading Channel," in Proc. ICACT, Feb. 2006, vol. 2, pp. 1277 - 1282.
  10. P. Magniez, B. Muquet, P. Duhamel, and M. de Courville, "Improved turbo-equalization with application to bit interleaved modulations," in Proc. Asilomar Conf. on Signals, Syst. Comput., Pacific Grove, CA, Oct. 2000, vol. 2, pp. 1786 - 1790.
  11. A. Dejonghe and L. Vandendorpe, "Turbo-equalisation for multilevel modulation: an efficient low-complexity scheme," in Proc. IEEE Int. Conf. Commun., New York, USA, Apr. 28-May 2, 2002, vol.-3, pp.-1863-1867.
  12. J. G. Proakis, Digital Communications, 4th ed., New York: McGraw-Hill, 2001
  13. J. R. Barry, Digital Communications, 3rd ed. New York: Springer 2004.