초록
본 논문에서는 기존 HubNet 기반의 참여 모의실험의 한계를 극복하기 위한 능동형 참여 모의실험 (Active Participatory Simulation; APS) 학습 구조를 제시하고, 이를 위한 고고보도용 NetLogo 확장 모듈을 자바로 개발한다. NetLogo는 복잡하게 보이는 과학현상의 이면에 존재하는 복잡계를 모델링할 수 있는 에이전트 기반 모델링 (Agent Based Modeling) 언어다. 이것과 HubNet을 이용하면 모의실험이 수행되는 동안 학생은 하나의 에이전트로서 이 실험에 참여할 수 있다. 하지만 HubNet에서는 서버만이 외부장치와 연결된다. 따라서 고고보드를 이용한 환경 데이터 및 사용자 입력을 다수의 클라이언트를 통하여 수신할 수 없어 이중초점 모델링 기반 학습이 불가능하다. 이에 클라이언트에 연결된 고고보드의 입력 정보를 TCP/IP 소켓을 이용하여 수신하고 보드를 제어하는 자바 확장 모듈을 개발한다. 또한 HubNet과 이 확장 모듈을 사용한 APS 학습 구조 모델링 방법과 이를 위한 NetLogo 프로그래밍을 소개한다. 마지막으로 다양한 APS 학습 구조에 따른 예시를 제시하고 응답처리지연 시간 관점에서 평가하여 과학분야에 활용될 수 있는 방안을 모색한다.
Flooding based routing protocols are usually used to disseminate information in wireless sensor networks. Those approaches, however, require message retransmissions to all nodes and induce huge collision rate and high energy consumption. In this paper, HoGoP (Hop based Gossiping Protocol) in which all nodes consider the number of hops from sink node to them, and decide own gossiping probabilities, is introduced. A node can decide its gossiping probability according to the required average reception percentage and the number of parent nodes which is counted with the difference between its hop and neighbors' ones. Therefore the decision of gossiping probability for network topology is adaptive and this approach achieves higher message reception percentage with low message retransmission than the flooding scheme. Through simulation, we compare the proposed protocol with some previous ones and evaluate its performance in terms of average reception percentage, average forwarding percentage, and forwarding efficiency. In addition, average reception percentage is analyzed according to the application requirement.