DOI QR코드

DOI QR Code

컴퓨터 소프트웨어 분야 연구를 위한 이산수학 분야에 대한 연구

A Study on Learning Program of Discrete Mathematicsfor Computer Software

  • 전상표 (남서울 대학교 교양학부)
  • Jun, Sang-Pyo (Dept. of General Education, Namseoul University)
  • 투고 : 2010.12.19
  • 심사 : 2010.12.27
  • 발행 : 2011.02.28

초록

정보 통신분야의 발전과 성장, 신기술의 보급으로 인하여 컴퓨터 산업은 빠르게 변화하고 있다. 이런 변화의 초석이 되는 소프트웨어 분야의 중요성은 점차 강조되고 있다. 소프트웨어 분야 연구의 기본 이론인 수학과 통계학의 중요성의 인식도 증대하고 있고, 수학의 분야 중에서도 이산수학에 대한 이해는 상당히 중요해 지고 있다. 컴퓨터 공학의 소프트웨어 분야에서의 기존 지식을 이해하고 미래에 다양한 분야에 응용하여 신기술을 개발하고, 연구를 하기 위한 기본적인 이산수학분야의 이해가 필수적이다. 이산수학에서 배워야 하는 분야와 내용에 대한 표준안도 아직 정립되지 않았고, 관련되는 내용이 방대 하여 교육이 적절치 않게 이루어지고 있다. 본 연구에서는 컴퓨터 소프트웨어 분야의 트랙별 연구에 관련성이 높은 이산수학 분야를 세분 설정하고, 연관성이 많은 부분을 선택 하여, 분야별 특성에 맞는 연구가 보다 효율적으로 이루어지고, 급변하는 관련 분야의 응용에 대처 할 수 있는 수학 교육방법론을 제시 하였다.

The industry of computer has been changed quickly by developing and growing info-communications industry and by supplying new technologies. The importance of software field which is based on this change is gradually emphasized. Nowadays more people tend to have realization of mathematics and statistics that are basic theory of software study, moreover, discrete mathematics is especially getting more important in whole mathematics field. It's essential to understand discrete mathematics in order to understand existing knowledge about software field in computer engineering and develop new technologies in different areas in the future. The way people get education about discrete mathematics, however, is improper as a result of massive materials and uncertain standard. This study subdivides discrete mathematics according to different tracks in the computer software study. In addition, the research which is suitable to individuality in different fields is able to be efficiently carried out by selecting related parts and the method of mathematics education is provided to deal with rapidly changed applications in related fields.

키워드

참고문헌

  1. NCTM (1989). Curriculum and Evaluation Standards for School Mathematics.
  2. NCTM (2000). Principles and Stangards for School Mathematics.
  3. Mathematics Classroom, A Contemporary Approach to Teaching Grades 7-12, Brooks/Cole.
  4. The Ministry of Education and Human Resources Development (1997). "Mathematics Curriculum 1997-15, The 7th Elementary and Secondary Mathematics Curriculum of Republic of Korea,"
  5. The Ministry of Education and Human Resources Development (2001). "The 7th Elementary and Secondary High School Education Curriculum of Republic of Korea, Guide 5."
  6. The Ministry of Education and Human Resources Development (2003). " High School Statistics and Probability The book compilation committee."
  7. The Ministry of Education and Human Resources Development(2003). "High School Discrete Mathematics The book compilation committee."
  8. Lee, Jae Hak (2003). "A Discrete Mathematics Curriculum in the Teacher training University," Joural of The Korea Society Mathematical Education Series E 15 pp.43-52,
  9. Lee, Jun Yull (2002). "Implementing Discrete Mathematics in the 7th Elementary and Secondary School Mathematics Curriculum of Republic of Korea," Joural of The Korea Society Mathematical Education Series A 41(1), pp.127-137,
  10. Park, Jin Hong (1996). "New Discrete Mathematics" Kyowoo press.
  11. Yoo, Won Hee(1992). "Discrete Mathematics"" Kyung moon press.
  12. Lee, Seung Woo (2008). "A Curriculum Analysis on Mathematics/Statistics related courses in the Computer Software Majors," Joural of The Korea Society Mathematical Education Series A 47(2) pp. 225-232,
  13. Lee, Seung Woo (2008). " A Research on the Relation between Mathematics/Statistics and Software/Hardware Tracks, " Joural of The Korea Society Mathematical Education Series A 47(4) pp. 505-517
  14. Kim, Dae Soo, "Discrete Mathematics," Life & Power Press, 2010
  15. Park, Hyung Bin. Jung, Inchul. Lee, Heon Soo, "A study on the relationship between freshman's achievements of general mathematics and BMDT," Joural of The Korea Society Mathematical Education Series A 49(3) pp. 329-341, 2010