Abstract
This paper provides a novel approach for developers to use face detection techniques for their applications easily without special knowledge by selecting optimal face detection algorithms based on fuzzy inference. The purpose of this paper is to come up with a high-level system for face detection based on fuzzy inference with which users can develop systems easily and even without specific knowledge on face detection theories and algorithms. Important conditions are firstly considered to categorize the large problem space of face detection. The conditions identified here are then represented as expressions so that developers can use them to express various problems. The expressed conditions and available face detection algorithms constitute the fuzzy inference rules and the Fuzzy Interpreter is constructed based on the rules. Once the conditions are expressed by developers, the Fuzzy Interpreter proposed take the role to inference the conditions and find and organize the optimal algorithms to solve the represented problem with corresponding conditions. A proof-of-concept is implemented and tested compared to conventional algorithms to show the performance of the proposed approach.
본 논문에서는 퍼지추론을 기반으로 얼굴검출 알고리즘을 지능적으로 선택함으로써 개발자들이 전문적인 지식이 없이 얼굴검출 기능을 손쉽게 사용할 수 있는 새로운 기법을 제안한다. 본 논문의 목적은 퍼지추론 기반의 고차원 얼굴검출 시스템을 제시함으로써 사용자들이 컴퓨터비전 이론이나 개별 알고리즘들에 대한 전문적인 지식이 없어도 손쉽게 얼굴검출 기능을 포함하는 시스템을 개발할 수 있도록 지원하는데 있다. 얼굴검출의 방대한 문제영역을 분류하기 위해서 가장 먼저 얼굴검출을 위한 주요한 조건들을 고려하고 정리하였다. 이렇게 정리된 조건들은 개발자들이 주어진 문제를 표현하는데 사용할 수 있도록 정의되었다. 정의된 조건들과 사용 가능한 얼굴검출 알고리즘들은 퍼지추론 규칙을 이용하여 규칙화 되고 퍼지추론 해석기를 구성한다. 개발자들에 의해서 개별 문제의 조건들이 정리되면, 제안된 퍼지해석기가 퍼지추론을 통해 이에 대응되는 문제를 해결하기 위한 최적을 알고리즘들을 찾아내고 구성한다. 제안된 방법의 개념검증을 위해 기존의 알고리즘들과 성능을 비교하였으며 이를 분석하고 우수성과 실용성을 보여준다.