DOI QR코드

DOI QR Code

배양된 쥐 해마신경세포에서 μ-아편양 수용체의 발현에 대한 해양심층수의 영향

Effect of Deep Seawater on Expression of μ-Opioid Receptor in Cultured Rat Hippocampal Neurons

  • 문일수 (인제대학교 의과대학 내과학교실) ;
  • 김성호 (동국대학교 의과대학 해부학교실)
  • Moon, Il-Soo (Department of Internal Medicine, Inje University College of Medicine) ;
  • Kim, Seong-Ho (Department of Anatomy, Dongguk University College of Medicine)
  • 투고 : 2010.11.04
  • 심사 : 2010.12.06
  • 발행 : 2011.02.28

초록

해양심층수는 깊이 200 m 정도 혹은 그 이상의 해수를 말한다. 해양심층수는 무기물질이 풍부하여 여러 분야 적용을 위해 많은 관심이 쏠리고 있다. 본 연구에서는 동해 양양 부근에서 취수한 해양심층수에서 배양된 쥐 해마신경세포의 ${\mu}$-아편양 수용체 발현에대한 영향을 조사하였다. 경도 800 및 1,000 심층수가 25% (v/v) 포함된 minimal essential media에서 해마신경세포를 배양해 대조군(증류수 첨가)과 비교하였다. 경도 800 및 1000심층수 첨가 배양액에서 배양된 신경세포 및 별아교세포에서 ${\mu}$-아편양 수용체의 면역반응 신호가 매우 증가했다. 흥미롭게도 신경세포보다 별아교세포에서 ${\mu}$-아편양 수용체의 면역반응 신호 증가가 더 뚜렷했다. 통계 분석시 경도 800 및 1000에서 배양된 별아교세포에서 ${\mu}$-아편양 수용체 군에 대한 상대적 강도가 약 4배 증가했다. 이런 증가는 통계적으로 매우 유의했다(p<0.001). 대조적으로 신경세포에선 이런 증가가 상대적으로 덜 뚜렷하였고, 경도 1000배양에서만 통계적으로 유의하였다(p<0.001). 이 결과들은 심층수가 신경세포 및 별아교세포에서 ${\mu}$-아편양 수용체의 발현을 항진 시킨다는 것을 나타내었다.

Deep seawater (DSW) generally refers to seawater at depths equal to or greater than 200 meters. DSW is rich in inorganic materials which have attracted attention for its various applications. In this study we investigated the effects of the DSW upwelled from the East Sea, offshore Yang Yang (KangWon-do, Korea), on the expression of ${\mu}$-opioid receptor (MOR) of cultured rat hippocampal neurons. Neurons were grown in a minimal essential medium containing 10% (v/v) fetal bovine serum and either 25% (v/v) distilled water, or hardness (H) 800, or H 1000 DSW. Cultures grown in the presence of DSW with H 800 and H 1000 exhibited robust MOR immunoreactive signals in both neurons and astrocytes. Interestingly, the increase in MOR immunoreactive signals was more dramatic in astrocytes than in neurons. Statistical analysis revealed that the relative intensities for MOR clusters increased approximately 4-fold in astrocytes cultured in H 800 and H 1000 media. These increases were statistically very significant (p<0.001). In contrast, the increase in intensities for MOR immunoreactive signals was relatively less dramatic in neurons, where only the increase in the H 1000 culture was statistically very significant (p<0.001). These results indicated that DSW promotes expression of MOR in both neurons and astrocytes, and more significantly in the latter.

키워드

참고문헌

  1. Brewer, G. J., J. R. Torricelli, E. K. Evege, and P. J. Price. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576. https://doi.org/10.1002/jnr.490350513
  2. Chapman, V., J. E. Haley, and A. H. Dickenson. 1994. Electrophysiologic analysis of preemptive effects of spinal opioids on N-methyl-D-aspartate receptor-mediated events. Anesthesiol. 81, 1429-1435. https://doi.org/10.1097/00000542-199412000-00018
  3. Eriksson, P. S., E. Hansson, and L. Ronnback. 1991. Mu and delta opiate receptors in neuronal and astroglial primary cultures from various regions of the brain--coupling with adenylate cyclase, localisation on the same neurones and association with dopamine (D1) receptor adenylate cyclase. Neuropharmacol. 30, 1233-1239. https://doi.org/10.1016/0028-3908(91)90170-G
  4. Goslin, K., H. Asmussen, and G. Banker. 1998. Rat hippocampal neurons in low-density culture, pp. 339-370, In Banker, G. and K. Goslin (eds.), Culturing nerve cells. MIT Press, Cambridge.
  5. Gracy, K. N., A. L. Svingos, and V. M. Pickel. 1997. Dual ultrastructural localization of mu-opioid receptors and NMDA-type glutamate receptors in the shell of the rat nucleus accumbens. J. Neurosci. 17, 4839-4848.
  6. Hachmuth, C. 1991. On the properties of deep seawater at Keahole point. In: Proceeding of the International Forum on Deep Sea Water, pp. 46-49, Japan.
  7. Katsuda, S., T. Yasukawa, K. Nakagawa, M. Miyake, M. Yamasaki, K. Katahira, M. Mohri, T. Shimizu, and A. Hazama. 2008. Deep-sea water improves cardiovascular hemodynamics in Kurosawa and Kusanagi-Hypercholesterolemic (KHC) rabbits. Biol. Pharm. Bull. 31, 38-44. https://doi.org/10.1248/bpb.31.38
  8. Kim, S. H., N. H. Choi, I. S. Park, and K. S. Nam. 2008. Serotonin changes in specific brain regions of fibromyalgia animal model after deep-sea water drinking. J. Korean Rheumat. Assoc. 15, 110-117. https://doi.org/10.4078/jkra.2008.15.2.110
  9. Kim, S. H., H. Lee, K. S. Nam, Y. H. Shon, and I. S. Moon. 2008. Promotion of synaptic maturation by deep seawater in cultured rat hippocampal neurons. J. Life Sci. 18, 1479-1484. https://doi.org/10.5352/JLS.2008.18.11.1479
  10. Lee, H., K. S. Nam, Y. H. Shon, and I. S. Moon. 2008. Deep seawater increases dendritic branches of cultured rat hippocampal neurons. J. Life Sci. 18, 897-901. https://doi.org/10.5352/JLS.2008.18.6.897
  11. Mao, J. 1990. NMDA and opioid receptors: their interactions in antinociception, tolerance and neuroplasticity. Brain Res. Rev. 30, 289-304.
  12. Miyamura, M., S. Yoshioka, A. Hamada, D. Takuma, J. Yokota, M. Kusunose, S. Kyotani, H. Kawakita, K. Odani, Y. Tsutsui, and Y. Nishioka. 2004. Difference between deep seawater and surface seawater in the preventive effect of atherosclerosis. Biol. Pharm. Bull. 27, 1784-1787. https://doi.org/10.1248/bpb.27.1784
  13. Moon, I. S., S. J. Cho, I. Jin, and R. A. Walikonis. 2007. A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol. Cells 24, 76-82.
  14. Ruzicka, B. B., C. A. Fox, R. C. Thompson, F. Meng, S. J. Watson, and H. Akil. 1995. Primary astroglial cultures derived from several rat brain regions differentially express mu, delta and kappa opioid receptor mRNA. Brain Res. Mol. Brain Res. 34, 209-220. https://doi.org/10.1016/0169-328X(95)00165-O
  15. Shon, Y. H., M. K. Kim, J. S. Jang, E. J. Jung, and K. S. Nam. 2008. Effect of deep sea water on phase I, phase II and ornithine decarboxylase. J. Life Sci. 18, 381-386. https://doi.org/10.5352/JLS.2008.18.3.381
  16. Sivilotti, L. G., G. Gerber, B. Rawat, and C. J. Woolf. 1995. Morphine selectively depresses the slowest, NMDA-independent component of C-fibre-evoked synaptic activity in the rat spinal cord in vitro. Eur. J. Neurosci. 7, 12-18. https://doi.org/10.1111/j.1460-9568.1995.tb01015.x
  17. Sluka, K. A., A. Kalra, and S. A. Moore. 2001. Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24, 37-46. https://doi.org/10.1002/1097-4598(200101)24:1<37::AID-MUS4>3.0.CO;2-8
  18. Stiene-Martin, A., R. Zhou, and K. F. Hauser. 1998. Regional, developmental, and cell cycle-dependent differences in mu, delta, and kappa-opioid receptor expression among cultured mouse astrocytes. Glia 22, 249-259. https://doi.org/10.1002/(SICI)1098-1136(199803)22:3<249::AID-GLIA4>3.0.CO;2-0
  19. Vaughan, C. W. and M. J. Christie. 1997. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro. J. Physiol. 498, 463-472. https://doi.org/10.1113/jphysiol.1997.sp021872
  20. Yoshioka, S., A. Hamada, T. Cui, J. Yokota, S. Yamamoto, M. Kusunose, M. Miyamura, S. Kyotani, R. Kaneda, Y. Tsutsui, K. Odani, I. Odani, and Y. Nishioka. 2003. Pharmacological activity of deep-sea water: examination of hyperlipemia prevention and medical treatment effect. Biol. Pharm. Bull. 26, 1552-1559. https://doi.org/10.1248/bpb.26.1552
  21. Zhang, K. M., X. M. Wang, and S. S. Mokha. 1996. Opioids modulate N-methyl-D-aspartic acid (NMDA)-evoked responses of neurons in the superficial and deeper dorsal horn of the medulla (trigeminal nucleus caudalis). Brain Res. 719, 229-233. https://doi.org/10.1016/0006-8993(96)00123-0