Abstract
Since conventional optimization that is classified as a deterministic method does not consider the uncertainty involved in a modeling or manufacturing process, an optimum design is often determined to be on the boundaries of the feasible region of constraints. Reliability-based design optimization is a method for obtaining a solution by minimizing the objective function while satisfying the reliability constraints. This method includes an optimization process and a reliability analysis that facilitates the quantization of the uncertainties related to design variables. Moment-based reliability analysis is a method for calculating the reliability of a system on the basis of statistical moments. In general, on the basis of these statistical moments, the Pearson system estimates seven types of distributions and determines the reliability of the system. However, it is technically difficult to practically consider the Pearson Type IV distribution. In this study, we propose an enhanced Pearson Type IV distribution based on a kriging model and validate the accuracy of the enhanced Pearson Type IV distribution by comparing it with a Monte Carlo simulation. Finally, reliability-based design optimization is performed for a system with type IV distribution by using the proposed method.
확정론적 최적설계 방법은 설계 혹은 공정과정에서 발생하는 설계변수의 불확실성을 고려하지 않아 최적점이 제한조건의 경계점에 위치한다. 신뢰성기반 최적설계는 설계자가 요구하는 신뢰도를 만족하는 범위에서 목적함수가 최소가 되는 최적점을 찾는 방법이다. 이 과정은 최적설계 과정과 설계변수의 불확실성을 고려하는 신뢰성해석 과정으로 나눌 수 있다. 모멘트기반 신뢰성해석은 시스템의 통계적 모멘트를 이용하여 신뢰도를 구하는 방법이다. 일반적으로 신뢰성해석은 통계적 모멘트의 값에 따라 피어슨 시스템을 통해 시스템의 확률밀도함수를 7 가지 형태로 분류하여 신뢰도를 구한다. 하지만 피어슨 시스템에서 타입 IV 분포의 경우에는 수식이 복잡하여 다루기 어려운 문제점이 있었다. 본 논문에서는 크리깅모델을 이용하여 피어슨 시스템의 단점을 개선한 신뢰성 해석기법을 크리깅모델을 이용하여 개발하고 이를 적용하여 신뢰성기반최적설계 방법을 제안하다. 피어슨 타입 IV 의 수학 및 공학예제에 대하여 신뢰성기반최적설계를 수행하고 이를 몬테카를로 시뮬레이션을 이용하여 정확성을 검증한다.