References
- C. Tzomakas and W. Sleen, “Vehicle detection in traffic scenes using shadows,” Technical Report 98-06, Institut fur Neuroinformatik, Ruth-Universitat, Bochum, Germany, 1998.
- T. Zielke, M. Brauckmann, and W. von Seelen, “Intensity and edge based symmetry detection with application to carfollowing,” CVGIP:Image Understanding, vol. 58, pp. 177-190, 1993. https://doi.org/10.1006/ciun.1993.1037
- N. Matthews, P. E. An, D. Charnley, and C. J. Harris, “Vehicle detection and recognition in greyscale imagery,” Control Eng. Practice, vol. 4, pp. 473-479, 1996. https://doi.org/10.1016/0967-0661(96)00028-7
- Z. Sun, R. Miller, G. Bebis, and D. DiMeo, “A real-time precrash vehicle detection system,” Proc. of IEEE Intn’l Workshop Application of Computer Vision, Dec. 2002.
- P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2001.
- H. Bai, J. Wu, and C. Liu, “Motion and Haar-like feature based vehicle detection,” Proc. of the 12th International Multi-Media Modelling Conference, pp. 356-359, 2006.
- P. Viola and M. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
- P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using patterns of motion and appearance,” Proc. of Ninth IEEE International Conference on Computer Vision, 2003.
- R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated predictions,” Machine Learning, vol. 37, pp. 297-336, 1999. https://doi.org/10.1023/A:1007614523901
- S. P. Adhikari, H. Cho, H. Yoo, C. Yang, and H. Kim, “Onroad succeeding vehicle detection using characteristic visual features,” Trans. on KIEE, vol. 59, no. 3, 2010.
- W. H. Li, A. M. Zhang, and L. Kleeman, “Bilateral symmetry detection for real-time robotics applications,” The International Journal of Robotics Research, vol. 27, no. 7, pp. 785-814, 2008. https://doi.org/10.1177/0278364908092131