DOI QR코드

DOI QR Code

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Kim, Chul-Hyun (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Song, Myung-Kwan (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Park, Jin-Su (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Lee, Jae-Wook (Department of Chemistry, Dong-A University) ;
  • Gal, Yeong-Soon (Polymer Chemistry Lab., Kyungil University) ;
  • Lee, Jun-Hee (Department of Advanced Materials Engineering, Dong-A University) ;
  • Jin, Sung-Ho (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University)
  • Received : 2010.06.22
  • Accepted : 2010.12.06
  • Published : 2011.02.20

Abstract

The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).

Keywords

References

  1. Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chem. Rev. 2009, 109, 897-1091. https://doi.org/10.1021/cr000013v
  2. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497-500. https://doi.org/10.1038/nmat1928
  3. Hamilton, R.; Smith, J.; Ogier, S.; Heeney, M.; Anthony, J. E.; McCulloch, I.; Veres, J.; Bradley, DDC.; Anthopoulos, T. D. Adv. Mater. 2009, 21, 1166-1171. https://doi.org/10.1002/adma.200801725
  4. Shaheen, S. E.; Radspinner, R.; Peyghambarian, N.; Jabbour, G. E. Appl. Phys. Lett. 2001, 79, 2996-2998. https://doi.org/10.1063/1.1413501
  5. Zou, Y.; Gendron, D.; Neagu-Plesu, R.; Leclerc, M. Macromolecules 2009, 42, 6361-6365. https://doi.org/10.1021/ma901114j
  6. Burgi, L.; Trubiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H. J.; Winnewisser, C. Adv. Mater. 2008, 20, 2217-2224. https://doi.org/10.1002/adma.200702775
  7. Li, W.; Han, Y.; Li, B.; Liu, C.; Bo, Z. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 4556-4563. https://doi.org/10.1002/pola.22792
  8. Gaudiana, R.; Brabec, C. Nat. Photon. 2008, 2, 287-289. https://doi.org/10.1038/nphoton.2008.69
  9. Verified by NREL (see on www.konarka.com, press release of 12.09/ 2008), to be published.
  10. Dhanabalan, A.; van Duren, J. K. J.; van Hal, P. A.; van Dongen, L. J.; Janssen, R. A. J. Adv. Funct. Mater. 2001, 11, 255-262. https://doi.org/10.1002/1616-3028(200108)11:4<255::AID-ADFM255>3.0.CO;2-I
  11. Jayakannan, M.; van Hal, P. A.; Janssen, R. A. J. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 251-261. https://doi.org/10.1002/pola.10107
  12. Kim, Y. G.; Walker, J.; Samuelson, L. A.; Kumar, J. Nano Letters 2003, 3, 523-525. https://doi.org/10.1021/nl0259535
  13. Jin, S. H.; Hwang, C. K.; Gal, Y. S.; Park, D. K.; Cho, S. J.; Shin, D. M.; Lee, J. E. European Polymer Journal 2004, 40, 1975-1980. https://doi.org/10.1016/j.eurpolymj.2004.03.028
  14. Naidu, B. V. K.; Park, J. S.; Park, S. M.; Lee, E. J.; Yoon, K. J.; Kim, S. C.; Lee, S. J.; Lee, J. W.; Gal, Y. S.; Jin, S. H. Sol. Energy Mater. Sol. Cells 2008, 92, 397-401. https://doi.org/10.1016/j.solmat.2007.09.017
  15. Zhang, S.; Cyr, P. W.; McDonald, S. A.; Konstantatos, G.; Sargent, E. H. Appl. Phys. Lett. 2005, 87, 233101-233103. https://doi.org/10.1063/1.2137895
  16. Guo, Y.; Li, Y.; Xu, J.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Zhu, M.; Cui, S.; Jiang, L.; Liu, H.; Wang, S. J. Phys. Chem. C 2008, 112, 8223-8228. https://doi.org/10.1021/jp800456c
  17. Lin, Y. Y.; Lee, Y. Y.; Chang, L.; Wu, J. J.; Chen, C. W. Appl. Phys. Lett. 2009, 94, 063308-063310. https://doi.org/10.1063/1.3080203
  18. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425-2427. https://doi.org/10.1126/science.1069156
  19. Kang, Y.; Park, N.; Kim, D. Appl. Phys. Lett. 2005, 86, 113101-113103. https://doi.org/10.1063/1.1883319
  20. Sun, B. Q.; Snaith, H. J.; Dhoot, A. S.; Westenhoff, S.; Greenham, N. C. J. Appl. Phys. 2005, 97, 014914. https://doi.org/10.1063/1.1804613
  21. Chang, C. H.; Huang, T. K.; Lin, Y. T.; Lin, Y. Y.; Chen, C. W.; Chu, T. H.; Su, W. F. J. Mater. Chem. 2008, 18, 2201-2207. https://doi.org/10.1039/b800071a
  22. Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y. Chem. Mater. 2002, 14, 4736-4745. https://doi.org/10.1021/cm020587b
  23. Chittibabu, K. G.; Balasubramanian, S.; Kim, W. H.; Cholli, A. L.; Kumar, J.; Tripathy, K. J. Macromol. Sci. Pure Appl. Chem. A 1996, 33, 1283-1300. https://doi.org/10.1080/10601329608010922
  24. Neuteboom, E. E.; Meskers, S. C. J.; Van Hal, P. A.; Van Duren, J. K. J.; Meijer, E. W.; Janssen, J.; Dupin, H.; Pourtois, G.; Cornil, J.; Lazzaroni, R.; Bredas, J. L.; Beljonne, D. J. Am. Chem. Soc. 2003, 125, 8625-8638. https://doi.org/10.1021/ja034926t
  25. Lee, K.; Kim, J. Y.; Park, S. H.; Kim, S. H.; Cho, S.; Heeger, A. J. Adv. Mater. 2007, 19, 2445-2449. https://doi.org/10.1002/adma.200602653
  26. Hayakawa, A.; Yoshikawa, O.; Fujieda, T.; Uehara, K.; Yoshikawa, S. Appl. Phys. Lett. 2007, 90, 163517-163519. https://doi.org/10.1063/1.2730746
  27. Varghese, O. K.; Grimes, C. A. Sol. Energy Mater. Sol. Cells 2008, 92, 374-384. https://doi.org/10.1016/j.solmat.2007.11.006

Cited by

  1. Chemically engineered PTh–co-PANi–Ti copolymer composite systems for photovoltaic application vol.27, pp.1, 2016, https://doi.org/10.1007/s10854-015-3845-y