DOI QR코드

DOI QR Code

Survival, Exercise Capacity, and Left Ventricular Remodeling in a Rat Model of Chronic Mitral Regurgitation: Serial Echocardiography and Pressure-Volume Analysis

  • Kim, Kyung-Hee (Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine) ;
  • Kim, Yong-Jin (Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine) ;
  • Lee, Seung-Pyo (Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine) ;
  • Kim, Hyung-Kwan (Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine) ;
  • Seo, Jeong-Wook (Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine) ;
  • Sohn, Dae-Won (Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine) ;
  • Oh, Byung-Hee (Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine) ;
  • Park, Young-Bae (Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine)
  • Published : 2011.10.30

Abstract

Background and Objectives: The aims of this study were to establish a reliable model of chronic mitral regurgitation (MR) in rats and verify the pathophysiological features of this model by evaluating cardiac function using serial echocardiography and a pressure-volume analysis. Materials and Methods : MR was created in 37 Sprague-Dawley rats by making a hole with a 23 gauge needle on the mitral leaflet through the left ventricular (LV) apex under the guidance of transesophageal echocardiography. Results: Serial echocardiograms revealed that the LV began to dilate immediately after the MR operation and showed progressive dilation until the 14th week (LV end-systolic dimension at 14 weeks, 4.71${\pm}$0.25 mm vs. 6.81${\pm}$0.50 mm for sham vs. MR, p<0.01; LV end-diastolic dimension, 8.32${\pm}$0.42 mm vs. 11.01${\pm}$0.47 mm, p<0.01). The LV ejection fraction tended to increase immediately after the MR operation but started to decrease thereafter and showed a significant difference with the sham group from the 14th week (70.0${\pm}$2.2% vs. 62.1${\pm}$3.1% for sham vs. MR). In a pressure-volume analysis performed at the 14th week, the LV end-systolic pressure-volume relationship and +dp/dt decreased significantly in the MR group. A serial treadmill test revealed that exercise capacity remained in the normal range until the 14th week when it began to decrease (exercise duration, 406${\pm}$45 seconds vs. 330${\pm}$27 seconds, p<0.01). A pathological analysis showed no significance difference in interstitial fibrosis between the two groups. Conclusion: We established a small animal model of chronic MR and verified its pathophysiological features. This model may provide a useful tool for future research on MR and volume overload heart failure.

Keywords

References

  1. Eriksson H. Heart failure: a growing public health problem. J Intern Med 1995;237:135-41. https://doi.org/10.1111/j.1365-2796.1995.tb01153.x
  2. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart 2007;93:1137-46. https://doi.org/10.1136/hrt.2003.025270
  3. Patten RD, Hall-Porter MR. Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail 2009;2:138-44. https://doi.org/10.1161/CIRCHEARTFAILURE.108.839761
  4. Monnet E, Chachques JC. Animal models of heart failure: what is new? Ann Thorac Surg 2005;79:1445-53. https://doi.org/10.1016/j.athoracsur.2004.04.002
  5. Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc 2008;3:1422-34. https://doi.org/10.1038/nprot.2008.138
  6. Singh JP, Evans JC, Levy D, et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol 1999;83:897-902, Erratum in: Am J Cardiol 1999;84:1143.
  7. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JJ, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet 2006;368:1005-11. https://doi.org/10.1016/S0140-6736(06)69208-8
  8. Zheng J, Chen Y, Pat B, et al. Microarray identifies extensive down-regulation of noncollagen extracellular matrix and profibrotic growth factor genes in chronic isolated mitral regurgitation in the dog. Circulation 2009;119:2086-95. https://doi.org/10.1161/CIRCULATIONAHA.108.826230
  9. Mishra YK, Mittal S, Jaguri P, Trehan N. Coapsys mitral annuloplasty for chronic functional ischemic mitral regurgitation: 1-year results. Ann Thorac Surg 2006;81:42-6. https://doi.org/10.1016/j.athoracsur.2005.06.023
  10. Pu M, Gao Z, Li J, Sinoway L, Davidson WR Jr. Development of a new animal model of chronic mitral regurgitation in rats under transesophageal echocardiographic guidance. J Am Soc Echocardiogr 2005;18:468-74. https://doi.org/10.1016/j.echo.2004.10.005
  11. Reffelmann T, Kloner RA. Transthoracic echocardiography in rats: evalution of commonly used indices of left ventricular dimensions, contractile performance, and hypertrophy in a genetic model of hypertrophic heart failure (SHHF-Mcc-facp-Rats) in comparison with Wistar rats during aging. Basic Res Cardiol 2003;98:275-84. https://doi.org/10.1007/s00395-003-0401-3
  12. Litwin SE, Katz SE, Weinberg EO, Lorell BH, Aurigemma GP, Douglas PS. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy: chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation. 1995;91:2642-54. https://doi.org/10.1161/01.CIR.91.10.2642
  13. Helmcke F, Nanda NC, Hsiung MC, et al. Color Doppler assessment of mitral regurgitation with orthogonal planes. Circulation 1987;75:175-83. https://doi.org/10.1161/01.CIR.75.1.175
  14. Chang SA, Kim YJ, Lee HW, et al. Effect of rosuvastatin on cardiac remodeling, function, and progression to heart failure in hypertensive heart with established left ventricular hypertrophy. Hypertension 2009;54:591-7. https://doi.org/10.1161/HYPERTENSIONAHA.109.131243
  15. Lips DJ, van der Nagel T, Steendijk P, et al. Left ventricular pressure-volume measurements in mice: comparison of closed-chest versus open-chest approach. Basic Res Cardiol 2004;99:351-9.
  16. Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. American J Physiol Heart Circ Physiol 2005;289:H501-12. https://doi.org/10.1152/ajpheart.00138.2005
  17. Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation 2001;104:346-51. https://doi.org/10.1161/01.CIR.104.3.346
  18. Monnet E, Chachques JC. Animal models of heart failure: What is new? Ann Thorac Surg 2005;79:1445-53. https://doi.org/10.1016/j.athoracsur.2004.04.002
  19. Daimon M, Shiota T, Gillinov AM, et al. Percutaneous mitral valve repair for chronic ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study in an ovine model. Circulation 2005;111:2183-9. https://doi.org/10.1161/01.CIR.0000163547.03188.AC
  20. Chaput M, Handschumacher MD, Guerrero JL, et al. Mitral leaflet adaptation to ventricular remodeling: prospective changes in a model of ischemic mitral regurgitation. Circulation 2009;120(11 Suppl):S99-103. https://doi.org/10.1161/CIRCULATIONAHA.109.844019
  21. Pu M, Gao Z, Zhang X, et al. Impact of mitral regurgitation on left ventricular anatomic and molecular remodeling and systolic function: implication for outcome. Am J Physiol Heart Circ Physiol 2009;296:H1727-37. https://doi.org/10.1152/ajpheart.00882.2008
  22. Zile MR, Tomita M, Nakano K, et al. Effects of left ventricular volume overload produced by mitral regurgitation on diastolic function. Am J Physiol 1991;261:H1471-80.
  23. Corin WJ, Murakami T, Monrad ES, Hess OM, Krayenbuehl HP. Left ventricular passive diastolic properties in chronic mitral regurgitation. Circulation 1991;83:797-807. https://doi.org/10.1161/01.CIR.83.3.797
  24. Ryan TD, Rothstein EC, Aban I, et al. Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J Am Coll Cardiol 2007;49:811-21. https://doi.org/10.1016/j.jacc.2006.06.083
  25. Weber KT, Pick R, Silver MA, et al. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 1990;82:1387-401. https://doi.org/10.1161/01.CIR.82.4.1387
  26. Michel JB, Salzmann JL, Ossondo Nlom M, Bruneval P, Barres D, Camilleri JP. Morphometric analysis of collagen network and plasma perfused capillary bed in the myocardium of rats during evolution of cardiac hypertrophy. Basic Res Cardiol 1986;81:142-54. https://doi.org/10.1007/BF01907379
  27. Pacher P, Mabley JG, Liaudet L, et al. Left ventricular pressure-volume relationship in a rat model of advanced aging-associated heart failure. Am J Physiol Heart Circ Physiol 2004;287:H2132-7. https://doi.org/10.1152/ajpheart.00405.2004
  28. Batkai S, Pacher P, Osei-Hyiaman D, et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation 2004;110:1996-2002. https://doi.org/10.1161/01.CIR.0000143230.23252.D2

Cited by

  1. Long-Term Effects of Sildenafil in a Rat Model of Chronic Mitral Regurgitation : Benefits of Ventricular Remodeling and Exercise Capacity vol.125, pp.11, 2011, https://doi.org/10.1161/circulationaha.111.065300
  2. Right Ventricular Failure and Pathobiology in Patients with Congenital Heart Disease – Implications for Long-Term Follow-Up vol.1, pp.None, 2011, https://doi.org/10.3389/fped.2013.00037
  3. Change of B-Type Natriuretic Peptide After Surgery and Its Association With Rhythm Status in Patients With Chronic Severe Mitral Regurgitation vol.29, pp.6, 2011, https://doi.org/10.1016/j.cjca.2012.09.006
  4. Myofilament dysfunction as an emerging mechanism of volume overload heart failure vol.466, pp.6, 2014, https://doi.org/10.1007/s00424-014-1455-9
  5. Ultrastructural Adaptation of the Cardiomyocyte to Chronic Mitral Regurgitation vol.8, pp.None, 2021, https://doi.org/10.3389/fcvm.2021.714774
  6. Dapagliflozin Improves Cardiac Hemodynamics and Mitigates Arrhythmogenesis in Mitral Regurgitation‐Induced Myocardial Dysfunction vol.10, pp.7, 2021, https://doi.org/10.1161/jaha.120.019274