DOI QR코드

DOI QR Code

Effect of Salicylic Acid on the Root Growth and the Eleutheroside Accumulation in the Adventitious Root Culture of Eleutherococcus senticosus

가시오갈피나무 불정근(不定根) 배양(培養)에서 불정근(不定根)의 생장(生長)과 Eleutheroside류(類)의 생산(生産)에 미치는 Salicylic Acid 처리(處理)의 영향

  • Ahn, Jin-Kwon (Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Lee, Wi Young (Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Park, Eung-Jun (Department of Forest Resources Utilization, Korea Forest Research Institute)
  • 안진권 (국립산림과학원 산림자원육성부) ;
  • 이위영 (국립산림과학원 산림자원육성부) ;
  • 박응준 (국립산림과학원 산림자원육성부)
  • Received : 2011.01.28
  • Accepted : 2011.03.17
  • Published : 2011.06.30

Abstract

This study was carried out to investigate the dose-dependent effect of salicylic acid on both the adventitious root growth and the accumulation of various eleutherosides in the bioreactor culture of Eleutherococcus senticosus. The highest biomass production (5.4 g DW/L) was observed in the absence of salicylic acid, while the root growth was significantly decreased by increasing the concentration of salicylic acid. Salicylic acid stimulated the production of both eleutheroside B, E and $E_1$. The highest levels of eleutheroside B ($179.5{\mu}g/g$ DW), E ($1169.9{\mu}g/g$ DW) and $E_1$ ($45.4{\mu}g/g$ DW) were obtained by the addition of $80{\mu}M$ of salicylic acid. The maximum eleutheroside production was $4975.8{\mu}g/L$ when salicylic acid was not added. In addition, when the adventitious roots were cultured in the basal medium supplemented with $80{\mu}M$ of salicylic acid, the highest levels of eleutheroside B was observed at the 9th day, while eleutheroside E and $E_1$ were observed at the 6th day, respectively.

생물반응기를 이용한 가시오갈피 부정근 배양시에 salicylic acid를 농도별(0, 5, 10, 20, 40, 80 ${\mu}M$)로 처리하여 부정근의 생장과 eleutheroside류 생산과의 관계를 조사하였다. Salicylic acid 처리농도별 부정근의 생장은 무처리구에서 4.4 g dry weight(DW)/L로 가장 높았으며, salicylic acid 농도가 증가할수록 부정근 생장은 감소하였다. 그러나 eleutheroside B, E 및 $E_1$의 함량은 대체로 salicylic acid 농도가 높을수록 증가하여 $80{\mu}M$ 처리구에서 각각 179.5, 1169.9 및 $45.4{\mu}g/g$ DW로 생산량이 가장 많았다. 배지 1 L당 eleutheroside류의 총생산량은 무처리구에서 $4975.8{\mu}g/L$를 생산하여 가장 우수하였다. $80{\mu}M$의 salicylic acid 처리 후 15일간 eleutheroside류의 함량을 조사한 결과 eleutheroside B는 salicylic acid처리 후 9일째, eleutheroside E 및 $E_1$은 처리 후 6일째 각각 가장 많은 생산량을 보여 주었다.

Keywords

References

  1. 李時珍. 本草綱目. 1974. 高文社. pp. 1204.
  2. 東醫寶鑑. 1959. 東方書店. pp. 740.
  3. 안진권, 이위영, 오성진, 박유헌, 허성두, 최명석. 2000. 가시오갈피나무의 eleutheroside E 및 chlorogenic acid 성분함량. 한국임학회지 89(2): 216-222.
  4. 안진권, 이위영, 박영기. 2007. 가시오갈피의 부정근 배양시 부정근의 생육과 eleutheroside류의 함량에 미치는 ${NO_{3}}^{-}$${NH_{4}}^{+}$비율 및 농도의 영향. 한국임학회지 96(1): 48-53.
  5. 안진권, 이위영, 박응준. 2010. 가시오갈피나무 부정근 배양에서 부정근의 생육과 eleutheroside류의 생산에 미치는 methyl jasmonate 처리의 영향. 한국임학회지 99(3): 331-336.
  6. 안진권, 박소영, 이위영, 박영기. 2006. 섬오갈피 부정근 배양에서 부정근의 생장과 eleutheroside류의 생산에 미치는 jasmonic acid 처리의 영향. 한국임학회지 95(1): 32-37.
  7. 유병산, 변상요. 2001. 고려인삼세포 현탁배양에서 회분 배양 특성 및 Ginsenoside 생산 에 대한 다양한 elicitor의 영향. 한국생물공학회지 16(6): 620-625.
  8. 이용일, 김동일. 2004. 백화사설초의 현탁세포배양에서 Elicitation에 의한 Oleanolic acid 생산성 증대. 한국생물공학회지 19(6): 471-477.
  9. 임 순, 배기화, 신치균, 김윤명, 김윤수, 2005, Methyl jasmonate 처리에 의한 인삼(Panax ginseng C.A. Meyer) 부정근의 이차대사산물 및 항산화활성 증가. 식물생명공학회지 32(3): 225-231.
  10. 최영해, 김진응. 2002. HPLC-ESI/MS를 이용한 eleutheroside B와 E의 정량. 생약학회지 33(2): 88-91.
  11. Akalezi, C.O., Liu, S., Li, Q.S., Yu, J.T. and Zhong, J.J. 1999. Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochemistry 34: 639-642. https://doi.org/10.1016/S0032-9592(98)00132-0
  12. Bourgaud, F., A. Gravot., S. Milesi and E. Gontier. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science 161: 839-851. https://doi.org/10.1016/S0168-9452(01)00490-3
  13. Chen, H. and Chen, H. 1999. Effects of methyl jasmonate and salicylic acid on cell growth and crytotashinone formation in Ti transfomed Salivia miltiorrhiza cell suspension cultures. Biotechnology Letter 21: 803-807. https://doi.org/10.1023/A:1005551911450
  14. Creelman, R.A and Mullet, J.E. 1997. Biosynthesis and action of jasmonates in plants. Annual Review. Plant Physiology and Plant Molecular Biology 48: 355-381. https://doi.org/10.1146/annurev.arplant.48.1.355
  15. Gundlach, H., Muller, M., Kutchan, T. and Zenk, M. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceeding of National Academy of Science U.S.A. 89: 2389-2393. https://doi.org/10.1073/pnas.89.6.2389
  16. Kang, S.M., Jung, H.Y., Kang, Y.M., Yun, D.J., Bahk, J.D., Yang, J.K. and Choi, M.S. 2004. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Science 166: 745-751. https://doi.org/10.1016/j.plantsci.2003.11.022
  17. Kang, J.S., Linh, P.T., Cai, X.F., Kim, H.S., Lee, J.J. and Kim, Y.H. 2001. Quantitative determination of eleutheroside B and E from Acanthopanax species by high performance liquid chromatography. Archives pharmacal research 24: 407-411. https://doi.org/10.1007/BF02975184
  18. Lazaridou, A., Roukas, T., Biliaderis, C.G. and Vaikousi, H. 2002. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme and Microbial Technology 31: 122-132. https://doi.org/10.1016/S0141-0229(02)00082-0
  19. Liu, S. and Zhong, J.J. 1997. Simultaneous production of ginseng saponin and polysaccharide by suspension cultures of Panax ginseng Nitrogen effects. Enzyme and Microbial Techology 21: 518-524. https://doi.org/10.1016/S0141-0229(97)00023-9
  20. Liu, S. and Zhong, J.J. 1998. Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochemistry 33: 69-74. https://doi.org/10.1016/S0032-9592(97)00064-2
  21. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  22. Paek, K.Y. and Chakravarthy, D. 2003. Micropropagation of woody plants using bioreactor, in: Jain, S.M and K. Ishii (Eds). Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Dordresht pp. 735-755.
  23. Seon, J.H., Yu, K.W., Cui, Y.Y., Kim, M.H., Lee, S.J., Son, S.H. and Paek, K.Y. 1999. Application of bioreactor for the production of saponin by adventitious roots cultures in Panax ginseng, in:Altman A (Ed), Plant Biotechnology and In Vitro Biology in the 21st Century, Kluwer Academic Publishers, Netherlands pp. 329-332.
  24. Slacanin, I., Marston, A. and Hostettmann, K. 1991. The isolation of Eleutherococcus senticosus constituents by centrifugal partition chromatography and their quantitative determination by high performance liquid chromatography. Phytochemistry Analysis 2: 137-142. https://doi.org/10.1002/pca.2800020310
  25. Son, S.H., Choi, S.M., Lee, Y.H., Choi, K.B., Yun, S.R., Kim, J.K., Park, H.J., Kwon, O.W., Noh, E.W., Seon, J.H. and Paek, K.Y. 2000. Large-scale growth and taxane production in cell cultures of Taxus cuspidata (Japanese yew) using a novel bioreactor. Plant Cell Reports 19: 628-633. https://doi.org/10.1007/s002990050784
  26. Suresh, B., Thimmaraju, R., Bhagyalakshmi, N. and Ravishankar, G.A. 2004. Polyamine and methyl jasmonateinfluenced enhancement of betalaine production in hairy root cultures of Beta vulgaris grown in a bubble column reactor and studies on efflux of pigments. Process Biochemistry 39: 2091-2096. https://doi.org/10.1016/j.procbio.2003.10.009
  27. Tang, W. 1992. Chinese drugs of plant origin, Springer-Verlag, Heidelberg pp. 1-12.
  28. Yu, K.W., Gao, W., Hahn, E.J. and Paek, K.Y. 2002. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochemical Engineering Journal 11: 211-215. https://doi.org/10.1016/S1369-703X(02)00029-3
  29. Zhong, J.J., Chen, F. and Hu, W.W. 1999. High density cultivation of Panax notoginseng cells in stirred bioreactors for the production of ginseng biomass and ginseng saponin. Process Biochemistry 35: 491-496. https://doi.org/10.1016/S0032-9592(99)00095-3
  30. Zobayed, S.M.A. and Saxena, P.K. 2003. In vitro grown roots a superior explant for prolific shoot regeneration of St. John's wort (Hypericum perforatum L. cv 'New Stem') in a temporary immersion bioreactor. Plant Science 165: 463-470. https://doi.org/10.1016/S0168-9452(03)00064-5