DOI QR코드

DOI QR Code

Uncertainty Analysis of Stem Density and Biomass Expansion Factor for Pinus rigida in Korea

리기다소나무림의 줄기밀도와 바이오매스 확장계수에 대한 불확실성 평가

  • Seo, Yeon Ok (Department of Forest Resources, Kongju National University) ;
  • Lee, Young Jin (Department of Forest Resources, Kongju National University) ;
  • Pyo, Jung Kee (Division of Forest Management, Korea Forest Research Institute) ;
  • Kim, Rae Hyun (Division of Forest Management, Korea Forest Research Institute) ;
  • Son, Yeong Mo (Division of Forest Management, Korea Forest Research Institute) ;
  • Lee, Kyeong Hak (Division of Forest Management, Korea Forest Research Institute)
  • 서연옥 (공주대학교 산림자원학과) ;
  • 이영진 (공주대학교 산림자원학과) ;
  • 표정기 (국립산림과학원 탄소경영연구과) ;
  • 김래현 (국립산림과학원 탄소경영연구과) ;
  • 손영모 (국립산림과학원 탄소경영연구과) ;
  • 이경학 (국립산림과학원 탄소경영연구과)
  • Received : 2011.01.05
  • Accepted : 2011.01.17
  • Published : 2011.06.30

Abstract

This study was conducted to examine the uncertainty analysis of the stem density and biomass expansion factor for Pinus rigida in Korea. A total of 57 representative sample trees were harvested. The age class in Pinus rigida forests was divided into two, which were stands with less than 20 years and more than 21 years. The influence of stand ages on biomass expansion factor showed that it was statistically significant (p=0.0001), but it was not significant on stem density (p=0.8070). The results of this study based on the uncertainty evaluation method which were suggested by IPCC guide line indicated that stem density of the stand with less than 20 years were 30.92%, while were 25.12% the stands with more than 21years. The uncertainty in biomass expansion factor of less than 20 years and more than 21 years were 60.32% and 22.42%, respectively. The uncertainty of less than 20 years was higher compared to those stands with more than 21 years. In the case of old stand, it showed the lowest uncertainty results but younger stands showed the highest uncertainty results. This study could be applied to our country's emission factor by using stem density and biomass expansion factors which were less than 20 years and more than 21 years for Pinus rigida in Korea.

본 연구는 리기다소나무림의 줄기밀도와 바이오매스 확장계수에 대한 불확실성을 평가하고자 하였다. 총 57본의 표본목을 벌채하였으며, 리기다소나무 20년생 이하의 유령임분과 21년생 이상의 성숙임분을 구분하여 t-검정을 실시한 결과, 줄기밀도는 영급별 차이가 나타나지 않는 반면(p=0.8070), 바이오매스 확장계수는 영급별 차이가 나타났다(p=0.0001). IPCC(Intergovernmental Panel on Climate Change)에서 제시한 불확실성 평가 방법을 이용하여 줄기밀도에 대한 불확실성을 평가한 결과, 20년생 이하에서 30.92%, 21년생 이상에서 25.12%으로 나타났으며, 바이오매스 확장계수에 대한 불확실성은 20년생 이하에서 60.32%, 21년생 이상에서 22.42%으로 나타났다. 줄기밀도의 불확실성은 영급별로 약 5.8%의 차이를 나타낸 반면, 바이오매스 확장계수의 불확실성은 20년생 이하가 21년생 이상 보다 약 37.9%로 매우 높은 것으로 나타났다. 즉, 성숙임분은 불확실성이 상대적으로 작게 나타났으며, 반면에 유령임분은 높게 나타났다. 따라서 줄기밀도와 바이오매스 확장계수를 사용할 경우, 20년생 이하의 영급과 21년생 이상의 영급을 구분하여 줄기밀도와 바이오매스 확장계수를 적용하여야 할 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. 국립산림과학원. 2004. IPCC 우수실행지침 -토지이용, 토지이용변화 및 임업-. pp. 423.
  2. 국립산림과학원. 2007. 우리나라 산림 바이오매스 자원평가. pp. 105.
  3. 국립산림과학원. 2008. 산림부분 온실가스 흡수 . 배출계수 관리 방안. pp. 94.
  4. 산림청. 2010. 교토의정서 대응 산림탄소계정 기반 구축연구. pp. 463.
  5. 산림청. 2010. 임업통계연보. http://www.forest.go.kr/
  6. FAO. 2004. Global Forest Resources Assessment Update 2005-Specification of National Reporting Table for FRA 2005. FRAP Working Paper No. 81.
  7. IPCC. 2003. Good Practice Guidance for Land Use, Land-use Change and Forestry Institute for Global Environmental Strategies. Kanagawa, Japan. pp. 576.
  8. IPCC. 2006. 2006 IPCC guidelines for national greenhouse gas inventories. Volume 1. General Guidance and Reporting. IPCC National Greenhouse Gas Inventory Programme. Institute for Global Environmental Strategies. Chapter 3.6-3.7.
  9. Lehtonen, A., Makipaa, R., Heikkinen, J., Sievanen, R. and Liski, J. 2003. Biomass expansion factors(BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224.
  10. Macfarlane, D.W., Green, E.J. and Valentine, H.V. 2000. Incorporating uncertainty into the parameters of a forest process model. Ecological Modelling 134: 27-40. https://doi.org/10.1016/S0304-3800(00)00329-X
  11. Monte, L., Lars, H., Ulla, B., John, B. and Rudie, H. 1996. Uncertainty analysis and validation of environmental models : The empirically based uncertainty analysis. Ecological Modelling 91: 139-152. https://doi.org/10.1016/0304-3800(95)00185-9
  12. Peltoniemi, M., Palosuo, T., Monni, S. and Makipaa, R. 2006. Factors affecting the uncertainty of sinks and stocks of carbon in Finnish forests soils and vegetation. Forest Ecology and Management. 75-85.
  13. Refsgaard, J.C., van der Sluijs, J.P., Hojberg A.L and Vanrolleghem, P.A. 2007. Uncertainty in the environmental modelling process-A framework and guidance. Environmental Modelling & Software 22: 1543-1556. https://doi.org/10.1016/j.envsoft.2007.02.004
  14. SAS Institute, Inc., 2004. SAS/STAT 9.1 User's Guide. SAS Institute, Inc. Cary. NC.
  15. Takeshi, F., Yamashita, K. and Kuroda, K. 2007. Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of FFPRI 6(4): 215-226.
  16. Rypday, K. and Winiwarter, W. 2001. Assessing the uncertainty associated with national greenhouse gas emission inventories : A case study for Austria. Atmospheric Environment 35: 5425-5440. https://doi.org/10.1016/S1352-2310(01)00171-6
  17. Woolley, T.J., Harmon, M.E. and O'Connell K.B. 2007. Estimating annual bole biomass production using uncertainty analysis. Forest Ecology and Management. pp. 202-210.