DOI QR코드

DOI QR Code

Photovoltaic Efficiency Characteristics of DSSC with Electroplated Pt/Ni Counter Electrode

백금/니켈 전기 도금 상대전극을 사용한 염료 감응형 태양전지 광전 변환 효율 특성

  • Hwang, Ki Seob (Department of Chemical Engineering, Keimyung University) ;
  • Doh, Seok Joo (Department of Nano Technology Advanced Nano.Materials Research Team, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Ha, KiRyong (Department of Chemical Engineering, Keimyung University)
  • 황기섭 (계명대학교 화학공학과) ;
  • 도석주 (대구경북과학기술연구원 NT 연구부 나노.신소재연구팀) ;
  • 하기룡 (계명대학교 화학공학과)
  • Received : 2010.11.10
  • Accepted : 2011.01.10
  • Published : 2011.02.10

Abstract

We prepared a counter electrode by electroplating Ni as underlayer and Pt as plating layer on the FTO glass to increase the efficiency of dye-sensitized solar cell (DSSC). We found an excellent adhesion between Ni underlayer and FTO glass when Ni underlayer was electroplated at $10mA/cm^2$ for 2 min on FTO glass. We observed Ni and Pt metal diffraction peaks by XRD analysis when Ni underlayer was electroplated at $10mA/cm^2$ for 2 min, and Pt layer was electroplated at $5mA/cm^2$ for 1 min on the Ni underlayer. Photovoltaic performance and impedance analysis of DSSCs fabricated with this counter electrode shows the highest efficiency of 5.6% and the lowest resistance of 75 ohm.

DSSC의 광전 효율 증대와 Pt 상대전극의 접착성 향상을 위하여 FTO (Fluorine-doped Tin Oxide) 유리면에 Ni underlayer를 전기 도금 후 Pt 층을 전기 도금하였다. Ni underlayer는 $10mA/cm^2$에서 2 min 동안 도금한 경우 Ni 층과 FTO 면사이의 접착성이 가장 우수하게 나타났으며, Ni underlayer를 $10mA/cm^2$에서 2 min, Pt 층을 $5mA/cm^2$에서 1 min 동안 전기 도금한 상대전극의 XRD 분석 결과 Ni 및 Pt의 금속 회절 peak들을 관찰 할 수 있었다. 이렇게 제조한 상대전극을 사용하여 DSSC의 impedance 측정 결과 75 ohm의 가장 낮은 저항을 나타냈으며, 광전 효율은 5.6%로서 가장 높은 값을 나타내었다.

Keywords

References

  1. S. H. Jung, K. J. Hwang, S. W. Kang, H. G. Jeong, S. I. Jeong, and J. W. Lee, J. Korea Ind. Eng. Chem., 20, 227 (2009).
  2. B. O'Reagan and M. Grazel, Nature, 335, 739 (1991).
  3. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, Electrochem. Commun., 10, 1555 (2008). https://doi.org/10.1016/j.elecom.2008.08.007
  4. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, Electrochem. Commun., 9, 596 (2007). https://doi.org/10.1016/j.elecom.2006.10.028
  5. E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, Electrochem. Commun., 10, 1087 (2008). https://doi.org/10.1016/j.elecom.2008.05.013
  6. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, and S. Hao, J. Power Sources, 181, 172 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.029
  7. K. S. Hwang and K. R. Ha, Appl. Chem. Eng., 21, 405 (2010).
  8. C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, and K. J. Kim, Electrochim. Acta, 53, 2890 (2008). https://doi.org/10.1016/j.electacta.2007.10.074
  9. P. Li, J. Wu, J. Lin, M. Huang, Z. Lan, and Q. Li, Electrochim. Acta, 53, 4161 (2008). https://doi.org/10.1016/j.electacta.2007.12.073
  10. S. S. Kim, K. W. Park, J. H. Yum, and Y. E. Sung, Sol. Energy Mater. Sol. Cells, 90, 283 (2006). https://doi.org/10.1016/j.solmat.2005.03.015
  11. A. I. Kontos, A. G. Kontos, D. S. Tsoukleris, M. C. Bernard, N. Spyrellis, and P. Falaras, J. Mat. Proc. Tech., 196, 243 (2008). https://doi.org/10.1016/j.jmatprotec.2007.05.051
  12. J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, J. Photochem. Photobio. A: Chemistry, 180, 184 (2006). https://doi.org/10.1016/j.jphotochem.2005.10.013
  13. S. Gagliardi, L. Giorgi, R. Giorgi, N. Lisi, Th. D. Makris, E. Salenitano, and A. Rufoloni, Superlattices Microstruct., 46, 205 (2009). https://doi.org/10.1016/j.spmi.2009.02.002
  14. G. P. Kalaignan, M. S. Kang, and Y. S. Kang, Solid State Ionics, 177, 1091 (2006). https://doi.org/10.1016/j.ssi.2006.03.013
  15. D. H. Chen and C. H. Hsieh, J. Mater. Chem., 12, 2415 (2002).
  16. S. Kumar and S. K. Chakarvarti, J. Mater. Sci., 39, 3249 (2004). https://doi.org/10.1023/B:JMSC.0000025871.02799.f3
  17. H. Wakayama and Y. Fukushima, Ind. Eng. Chem. Red., 39, 4641 (2000). https://doi.org/10.1021/ie000148r