References
- Wang LJ, Cao Y, Shi HN. Helminth infections and intestinal inflammation. World J Gastroenterol 2008; 14: 5125-5132. https://doi.org/10.3748/wjg.14.5125
- Magen E, Borkow G, Bentwich Z, Mishal J, Scharf S. Can worms defend our hearts? Chronic helminthic infections may attenuate the development of cardiovascular diseases. Med Hypotheses 2005; 64: 904-909. https://doi.org/10.1016/j.mehy.2004.09.028
- Fleming JO, Cook TD. Multiple sclerosis and the hygiene hypothesis. Neurology 2006; 67: 2085-2086. https://doi.org/10.1212/01.wnl.0000247663.40297.2d
- Cooke A, Zaccone P, Raine T, Phillips JM, Dunne DW. Infection and autoimmunity: Are we winning the war, only to lose the peace? Trends Parasitol 2004; 20: 316-321. https://doi.org/10.1016/j.pt.2004.04.010
- Yang J, Zhao J, Yang Y, Zhang L, Yang X, Zhu X, Ji M, Sun N, Su C. Schistosoma japonicum egg antigens stimulate CD4 CD25 T cells and modulate airway inflammation in a murine model of asthma. Immunology 2007; 120: 8-18.
- Akiho H, Blennerhassett P, Deng Y, Collins SM. Role of IL-4, IL-13, and STAT6 in inflammation-induced hypercontractility of murine smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2002; 282: G226-232.
- Feillet H, Bach JF. Increased incidence of inflammatory bowel disease: The price of the decline of infectious burden? Curr Opin Gastroenterol 2004; 20: 560-564. https://doi.org/10.1097/00001574-200411000-00010
- Fiocchi C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology 1998; 115: 182-205. https://doi.org/10.1016/S0016-5085(98)70381-6
- Weinstock JV, Summers RW, Elliott DE. Role of helminths in regulating mucosal inflammation. Springer Semin Immunopathol 2005; 27: 249-271. https://doi.org/10.1007/s00281-005-0209-3
- Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV. Trichuris suis therapy in Crohn's disease. Gut 2005; 54: 87-90. https://doi.org/10.1136/gut.2004.041749
- Elliott DE, Urban JJ, Argo CK, Weinstock JV. Does the failure to acquire helminthic parasites predispose to Crohn's disease? Faseb J 2000; 14: 1848-1855. https://doi.org/10.1096/fj.99-0885hyp
- Reardon C, Sanchez A, Hogaboam CM, McKay DM. Tapeworm infection reduces epithelial ion transport abnormalities in murine dextran sulfate sodium-induced colitis. Infect Immun 2001; 69: 4417-4423. https://doi.org/10.1128/IAI.69.7.4417-4423.2001
- Khan WI, Blennerhasset PA, Varghese AK, Chowdhury SK, Omsted P, Deng Y, Collins SM. Intestinal nematode infection ameliorates experimental colitis in mice. Infect Immun 2002; 70: 5931-5937. https://doi.org/10.1128/IAI.70.11.5931-5937.2002
- Gregory WF, Blaxter ML, Maizels RM. Differentially expressed, abundant trans-spliced cDNAs from larval Brugia malayi. Mol Biochem Parasitol 1997; 87: 85-95. https://doi.org/10.1016/S0166-6851(97)00050-9
- Park SK, Cho MK, Park HK, Lee KH, Lee SJ, Choi SH, Ock MS, Jeong HJ, Lee MH, Yu HS. Macrophage migration inhibitory factor homologs of Anisakis simplex suppress Th2 response in allergic airway inflammation model via CD4+CD25+Foxp3+ T cell recruitment. J Immunol 2009; 182: 6907-6914. https://doi.org/10.4049/jimmunol.0803533
- Yenbutr P, Scott AL. Molecular cloning of a serine proteinase inhibitor from Brugia malayi. Infect Immun 1995; 63: 1745-1753.
- Murray J, Gregory WF, Gomez-Escobar N, Atmadja AK, Maizels RM. Expression and immune recognition of Brugia malayi VAL-1, a homologue of vespid venom allergens and Ancylostoma secreted proteins. Mol Biochem Parasitol 2001; 118: 89-96. https://doi.org/10.1016/S0166-6851(01)00374-7
- Vray B, Hartmann S, Hoebeke J. Immunomodulatory properties of cystatins. Cell Mol Life Sci 2002; 59: 1503-1512. https://doi.org/10.1007/s00018-002-8525-4
- Zavasnik-Bergant T, Repnik U, Schweiger A, Romih R, Jeras M, Turk V, Kos J. Differentiation- and maturation-dependent content, localization, and secretion of cystatin C in human dendritic cells. J Leukoc Biol 2005; 78: 122-134. https://doi.org/10.1189/jlb.0804451
- Chapman HA Jr, Reilly JJ Jr, Yee R, Grubb A. Identification of cystatin C, a cysteine proteinase inhibitor, as a major secretory product of human alveolar macrophages in vitro. Am Rev Respir Dis 1990; 141: 698-705. https://doi.org/10.1164/ajrccm/141.3.698
- Murray J, Manoury B, Balic A, Watts C, Maizels RM. Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Mol Biochem Parasitol 2005; 139: 197-203. https://doi.org/10.1016/j.molbiopara.2004.11.008
- Manoury B, Gregory WF, Maizels RM, Watts C. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, in hibits class II MHC-restricted antigen processing. Curr Biol 2001; 11: 447-451. https://doi.org/10.1016/S0960-9822(01)00118-X
- Schonemeyer A, Lucius R, Sonnenburg B, Brattig N, Sabat R, Schilling K, Bradley J, Hartmann S. Modulation of human T cell responses and macrophage functions by onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus. J Immunol 2001; 167: 3207-3215.
- Klotz C, Ziegler T, Figueiredo AS, Rausch S, Hepworth MR, Obsivac N, Sers C, Lang R, Hammerstein P, Lucius R, Hartmann S. A helminth immunomodulator exploits host signaling events to regulate cytokine production in macrophages. PLoS Pathog 2011; 7: e1001248. https://doi.org/10.1371/journal.ppat.1001248
- Schnoeller C, Rausch S, Pillai S, Avagyan A, Wittig BM, Loddenkemper C, Hamann A, Hamelmann E, Lucius R, Hartmann S. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J Immunol 2008; 180: 4265-4272.
- Tarasuk M, Vichasri Grams S, Viyanant V, Grams R. Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Mol Biochem Parasitol 2009; 167: 60-71. https://doi.org/10.1016/j.molbiopara.2009.04.010
- Kang JM, Lee KH, Sohn WM, Na BK. Identification and functional characterization of CsStefin-1, a cysteine protease inhibitor of Clonorchis sinensis. Mol Biochem Parasitol 2011; 177: 126-134. https://doi.org/10.1016/j.molbiopara.2011.02.010
- Jeong YI, Kim SH, Ju JW, Cho SH, Lee WJ, Park JW, Park YM, Lee SE. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions. Biochem Biophys Res Commun 2011; 407: 793-800. https://doi.org/10.1016/j.bbrc.2011.03.102
- Kim JY, Cho MK, Choi SH, Lee KH, Ahn SC, Kim DH, Yu HS. Inhibition of dextran sulfate sodium (DSS)-induced intestinal inflammation via enhanced IL-10 and TGF-beta production by galectin-9 homologues isolated from intestinal parasites. Mol Biochem Parasitol 2010; 174: 53-61. https://doi.org/10.1016/j.molbiopara.2010.06.014
- van Meeteren ME, van Bergeijk JD, van Dijk AP, Tak CJ, Meijssen MA, Zijlstra FJ. Intestinal permeability and contractility in murine colitis. Mediators Inflamm 1998; 7: 163-168. https://doi.org/10.1080/09629359891090
- Kamada N, Hisamatsu T, Okamoto S, Chinen H, Kobayashi T, Sato T, Sakuraba A, Kitazume MT, Sugita A, Koganei K, Akagawa KS, Hibi T. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest 2008; 118: 2269-2280.
- Rogler G, Hausmann M, Vogl D, Aschenbrenner E, Andus T, Falk W, Andreesen R, Scholmerich J, Gross V. Isolation and phenotypic characterization of colonic macrophages. Clin Exp Immunol 1998; 112: 205-215. https://doi.org/10.1046/j.1365-2249.1998.00557.x
- Vitorino R, Lobo MJ, Ferrer-Correira AJ, Dubin JR, Tomer KB, Domingues PM, Amado FM. Identification of human whole saliva protein components using proteomics. Proteomics 2004; 4: 1109-1115. https://doi.org/10.1002/pmic.200300638
- Di Quinzio MK, Oliva K, Holdsworth SJ, Ayhan M, Walker SP, Rice GE, Georgiou HM, Permezel M. Proteomic analysis and characterisation of human cervico-vaginal fluid proteins. Aust N Z J Obstet Gynaecol 2007; 47: 9-15. https://doi.org/10.1111/j.1479-828X.2006.00671.x
- Manoury B, Hewitt EW, Morrice N, Dando PM, Barrett AJ, Watts C. An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation. Nature 1998; 396: 695-699. https://doi.org/10.1038/25379
- Owczarek D, Cibor D, Szczepanek M, Mach T. Biological therapy of inflammatory bowel disease. Pol Arch Med Wewn 2009; 119: 84-88.
- Fiorino G, Cesarini M, Danese S. Biological therapy for ulcerative colitis: What is after anti-TNF. Curr Drug Targets 2011; 12: 1433-1439. https://doi.org/10.2174/138945011796818225
- Hoentjen F, van Bodegraven AA. Safety of anti-tumor necrosis factor therapy in inflammatory bowel disease. World J Gastroenterol 2009; 15: 2067-2073. https://doi.org/10.3748/wjg.15.2067
- Stallmach A, Hagel S, Bruns T. Adverse effects of biologics used for treating IBD. Best Pract Res Clin Gastroenterol 2010; 24: 167-182. https://doi.org/10.1016/j.bpg.2010.01.002
- Akbari O, DeKruyff RH, Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001; 2: 725-731. https://doi.org/10.1038/90667
- Saraiva M, O'Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol 2010; 10: 170-181. https://doi.org/10.1038/nri2711
- Presser K, Schwinge D, Wegmann M, Huber S, Schmitt S, Quaas A, Maxeiner JH, Finotto S, Lohse AW, Blessing M, Schramm C. Coexpression of TGF-beta1 and IL-10 enables regulatory T cells to completely suppress airway hyperreactivity. J Immunol 2008; 181: 7751-7758.
- Mottet C, Uhlig HH, Powrie F. Cutting edge: Cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 2003; 170: 3939-3943.
Cited by
- Identification and characterization of the second cysteine protease inhibitor of Clonorchis sinensis (CsStefin-2) vol.113, pp.1, 2014, https://doi.org/10.1007/s00436-013-3624-8
- Generating a detailed protein profile of Fasciola hepatica during the chronic stage of infection in cattle vol.14, pp.12, 2011, https://doi.org/10.1002/pmic.201400012
- Worm Proteins of Schistosoma mansoni Reduce the Severity of Experimental Chronic Colitis in Mice by Suppressing Colonic Proinflammatory Immune Responses vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0110002
- Disequilibrium of M1 and M2 Macrophages Correlates with the Development of Experimental Inflammatory Bowel Diseases vol.43, pp.7, 2011, https://doi.org/10.3109/08820139.2014.909456
- Cloning, expression and characterisation of a type II cystatin from Schistosoma japonicum, which could regulate macrophage activation vol.113, pp.11, 2011, https://doi.org/10.1007/s00436-014-4064-9
- TLR2‐dependent amelioration of allergic airway inflammation by parasitic nematode type II MIF in mice vol.37, pp.4, 2011, https://doi.org/10.1111/pim.12172
- Brugia malayi cystatin therapeutically ameliorates dextran sulfate sodium‐induced colitis in mice vol.16, pp.10, 2011, https://doi.org/10.1111/1751-2980.12290
- Unraveling the Hygiene Hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications vol.13, pp.1, 2015, https://doi.org/10.1186/s12916-015-0306-7
- Helminth Regulation of Immunity : A Three-pronged Approach to Treat Colitis vol.22, pp.10, 2016, https://doi.org/10.1097/mib.0000000000000889
- Therapeutic potential of recombinant cystatin from Schistosoma japonicum in TNBS-induced experimental colitis of mice vol.9, pp.1, 2016, https://doi.org/10.1186/s13071-015-1288-1
- Elevated expression of CST1 promotes breast cancer progression and predicts a poor prognosis vol.95, pp.8, 2011, https://doi.org/10.1007/s00109-017-1537-1
- Parasite-Derived Proteins for the Treatment of Allergies and Autoimmune Diseases vol.8, pp.None, 2011, https://doi.org/10.3389/fmicb.2017.02164
- Helminths in the gastrointestinal tract as modulators of immunity and pathology vol.312, pp.6, 2011, https://doi.org/10.1152/ajpgi.00024.2017
- Therapeutic effect of Schistosoma japonicum cystatin on bacterial sepsis in mice vol.10, pp.1, 2011, https://doi.org/10.1186/s13071-017-2162-0
- SXP-RAL Family Filarial Protein, rWbL2, Prevents Development of DSS-Induced Acute Ulcerative Colitis vol.33, pp.3, 2011, https://doi.org/10.1007/s12291-017-0671-4
- A Role for Epitope Networking in Immunomodulation by Helminths vol.9, pp.None, 2011, https://doi.org/10.3389/fimmu.2018.01763
- Adoptive transfer of Trichinella spiralis-activated macrophages can ameliorate both Th1- and Th2-activated inflammation in murine models vol.9, pp.None, 2011, https://doi.org/10.1038/s41598-019-43057-1
- Molecular Characterization of a Dirofilaria immitis Cysteine Protease Inhibitor (Cystatin) and Its Possible Role in Filarial Immune Evasion vol.10, pp.4, 2019, https://doi.org/10.3390/genes10040300
- Cystatin from Filarial Parasites Suppress the Clinical Symptoms and Pathology of Experimentally Induced Colitis in Mice by Inducing T-Regulatory Cells, B1-Cells, and Alternatively Activated Macrophage vol.7, pp.4, 2019, https://doi.org/10.3390/biomedicines7040085
- Amelioration of type 1 diabetes by recombinant fructose-1,6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine model vol.119, pp.1, 2011, https://doi.org/10.1007/s00436-019-06511-7
- Wuchereria bancrofti macrophage migration inhibitory factor‐2 (rWbaMIF‐2) ameliorates experimental colitis vol.42, pp.4, 2020, https://doi.org/10.1111/pim.12698
- Integrated omics profiling of dextran sodium sulfate-induced colitic mice supplemented with Wolfberry ( Lycium barbarum ) vol.4, pp.1, 2020, https://doi.org/10.1038/s41538-020-0065-5
- Therapeutic efficacy of Schistosoma japonicum cystatin on sepsis-induced cardiomyopathy in a mouse model vol.13, pp.1, 2020, https://doi.org/10.1186/s13071-020-04104-3
- Clonorchis sinensis-Derived Protein Attenuates Inflammation and New Bone Formation in Ankylosing Spondylitis vol.12, pp.None, 2011, https://doi.org/10.3389/fimmu.2021.615369
- Helminth-derived cystatins: the immunomodulatory properties of an Ascaris lumbricoides cystatin vol.148, pp.14, 2011, https://doi.org/10.1017/s0031182021000214
- Potential of human helminth therapy for resolution of inflammatory bowel disease: The future ahead vol.232, pp.None, 2011, https://doi.org/10.1016/j.exppara.2021.108189