DOI QR코드

DOI QR Code

Synthesis of Low Molecular-weight Poly (Propylene Carbonate)-Poly (Ethylene Glycol) Block Copolymers through $CO_2$/Propylene Oxide Copolymerization

이산화탄소/프로필렌 옥사이드 공중합을 통한 저분자량 폴리(프로필렌 카보네이트)-폴리(에틸렌 글리콜) 블록 공중합체의 합성

  • Lee, Sang-Hwan (Department of Molecular Science and Technology, Ajou University) ;
  • Cyriac, Anish (Department of Molecular Science and Technology, Ajou University) ;
  • Jeon, Jong-Yeob (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Bun-Yeoul (Department of Molecular Science and Technology, Ajou University)
  • 이상환 (아주대학교 분자과학기술학과) ;
  • ;
  • 전종엽 (아주대학교 분자과학기술학과) ;
  • 이분열 (아주대학교 분자과학기술학과)
  • Received : 2011.07.14
  • Accepted : 2011.09.07
  • Published : 2011.09.30

Abstract

We synthesized low molecular-weight polymers bearing hydrophobic and hydrophilic parts in a chain through $CO_2$/propylene oxide copolymerization. When hydrophilic poly (ethylene glycol) bearing -OH group (s) at the end group (s) was added as a chain transfer agent in the $CO_2$/propylene oxide copolymerization catalyzed by a highly active catalyst, block polymers were formed. If poly (ethylene glycol) (PEG) bearing -OH group only at an end was fed, PEG-block-PPC diblock copolymer was obtained. When PEG bearing -OH group at both ends was fed, PPC-block-PEG-block-PPC triblock copolymer was obtained. We confirmed formation of block copolymers by $^1H$-NMR spectroscopy and GPC studies.

이산화탄소/프로필렌 옥사이드 공중합을 통하여 고분자 사슬 내에 친수성기와 소수성기가 공존하는 저분자량의 블록 공중 합체를 합성하였다. 고활성의 촉매를 사용한 이산화탄소/프로필렌 옥사이드 공중합 반응에 단말기로 -OH기를 갖는 폴리(에틸렌 글리콜)(PEG)을 분자량 조절제로 투입하여 블록 공중합체를 합성하였다. 단말기 한쪽 끝에만 -OH기를 갖는 폴리(에틸렌 글리콜)을 투입하였을 때는 PEG-block-PPC (폴리(프로필렌 카보네이트)) 다이블록 공중합체가 얻어지고, 단말기 양쪽 끝 모두 -OH기를 갖는 폴리(에틸렌 글리콜)을 투입하였을 때는 PPC-block-PEG-block-PPC 트리블록 공중합체가 얻어진다. 제조된 블록 공중합체는 $^1H$-NMR 스펙트럼을 통하여 구조 분석을 하였고 GPC를 통하여 분자량을 측정하였다.

Keywords

References

  1. Coates, G. W., and Moore, D. R., "Discrete Metal-based Catalysts for the Copolymerization of $CO_2$ and Epoxides: Discovery, Reactivity, Optimization, and Mechanism," Angew. Chem., Int. Ed., 43(48), 6618-6639 (2004). https://doi.org/10.1002/anie.200460442
  2. Darensbourg, D. J., "Making Plastics from Carbon Dioxide: Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and $CO_2$," Chem. Rev., 107(6), 2388-2410 (2007). https://doi.org/10.1021/cr068363q
  3. Kember, M. R., Buchard, A., and Williams, C. K., "Catalysts for $CO_2$/epoxide Copolymerisation," Chem. Commun., 47(1), 141-163 (2011). https://doi.org/10.1039/c0cc02207a
  4. Luinstra, G. A., "Poly(Propylene Carbonate), Old Copolymers of Propylene Oxide and Carbon Dioxide with New Interests: Catalysis and Material Properties," Polym. Rev., 48(1), 192- 219 (2008). https://doi.org/10.1080/15583720701834240
  5. Ren, W.-M., Zhang, X., Liu, Y., Li, J.-F., Wang, H., and Lu, X.-B., "Highly Active, Bifunctional Co(III)-Salen Catalyst for Alternating Copolymerization of $CO_2$ with Cyclohexene Oxide and Terpolymerization with Aliphatic Epoxides," Macromolecules, 43(3), 1396-1402 (2010). https://doi.org/10.1021/ma902321g
  6. Vagin, S. I., Reichardt, R., Klaus, S., and Rieger, B., "Conformationally Flexible Dimeric Salphen Complexes for Bifunctional Catalysis," J. Am. Chem. Soc., 132(41), 14367-14369 (2010). https://doi.org/10.1021/ja106484t
  7. Pack, J. W., and Lee, Y. W., "Clean Technologies using Surfactant for Supercritical Carbon dioxide," Clean Technology, 10(3), 149-158 (2004).
  8. Koh, M., Yoo, J., Park, K., Kim, H., and Kim, H., "Microemulsions in Supercritical Carbon Dioxide Utilizing Nonionic Surfactants," Clean Technology, 10(4), 221-228 (2004).
  9. Noh, E. K., Na, S. J., Sudevan, S., Kim S.-W., and Lee, B. Y., "Two Components in a Molecule: Highly Efficient and Thermally Robust Catalytic System for $CO_2$/Epoxide Copolymerization," J. Am. Chem. Soc., 129(29), 8082-8083 (2007). https://doi.org/10.1021/ja071290n
  10. Sudevan, S., Min, J. K., Seong, J. E., Na, S. J., and Lee, B. Y., "A Highly Active and Recyclable Catalytic System for $CO_2$/ Propylene Oxide Copolymerization," Angew. Chem., Int. Ed., 47(38), 7306-7309 (2008). https://doi.org/10.1002/anie.200801852
  11. Na, S. J., Sudevan, S., Cyriac, A., Kim, B. E., Yoo, J., Kang, Y. K., Han, S. J., Lee, C., and Lee B. Y., "Elucidation of the Structure of a Highly Active Catalytic System for $CO_2$/ Epoxide Copolymerization: A salen-Cobaltate Complex of an Unusual Binding Mode," Inorg. Chem., 48(21), 10455-10465 (2009). https://doi.org/10.1021/ic901584u
  12. Min, J., Seong, J. E., Na, S. J., Cyriac, A., and Lee, B. Y., "Efficient Synthesis of a Highly Active Catalyst for $CO_2$/ Epoxide Copolymerization," Bull. Korean Chem. Soc., 30(3), 745-748 (2009). https://doi.org/10.5012/bkcs.2009.30.3.745
  13. Cyriac, A., Lee, S. H., Varghese, J. K., Park, E. S., Park, J. H., and Lee, B. Y., "Immortal $CO_2$/Propylene Oxide Copolymerization: Precise Control of Molecular Weight and Architecture of Various Block Copolymers," Macromolecules, 43(18), 7398-7401 (2010). https://doi.org/10.1021/ma101259k
  14. Varghese, J. K., Na, S. J., Park, J. H., Woo, D., Yang, I., and Lee, B. Y., "Thermal and Weathering Degradation of Poly (Propylene Carbonate)," Polym. Degrad. Stab., 95(6), 1039-1044 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.03.006