DOI QR코드

DOI QR Code

Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs

  • Lee, Hae-Hyoung (Department of Biomaterials Science, School of Dentistry, Dankook University) ;
  • Shin, Ueon-Sang (Biomaterials and Tissue Engineering Lab., Department of Nanobiomedical Science & WCU Research Center, Dankook University) ;
  • Jin, Guang-Zhen (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Kim, Hae-Won (Department of Biomaterials Science, School of Dentistry, Dankook University)
  • Received : 2010.06.18
  • Accepted : 2010.11.03
  • Published : 2011.01.20

Abstract

For the fabrication of multifunctional biopolymer nanocomposites in the combination of carbon nanotubes (CNTs), recently increasing attention has been paid to an effective homogenization of CNTs within polymer matrices and a fine tuning of the concentration. We developed an efficient method to produce homogeneous CNT-polycaprolactone nanocomposites with various and controllable CNT concentrations using an ionically-modified multi-walled CNT, MWCNT-Cl. The modified MWCNTs could be homogeneously dispersed in tetrahydrofuran (THF). Polycaprolactone (PCL) as a biodegradable and biocompatible polymer was smoothly dissolved in the homogeneous MWCNT-Cl/THF solution without agglomeration of MWCNT-Cl. The physicochemical and mechanical properties of the resultant nanocomposites were examined and the biological usefulness was briefly assessed.

Keywords

References

  1. Tans, S. J.; Devoret, M. H.; Dai, H.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C. Nature 1997, 386, 474. https://doi.org/10.1038/386474a0
  2. Zhang, W. D.; Phang, I. Y.; Liu, T. X. AdV. Mater. 2006, 18, 73. https://doi.org/10.1002/adma.200501217
  3. Moon, S. I.; Jin, F.; Lee, C. J.; Tsutsumi, S.; Hyon, S. H. Macromol. Symp. 2005, 224, 287. https://doi.org/10.1002/masy.200550625
  4. Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253. https://doi.org/10.1126/science.280.5367.1253
  5. Wang, Y.; Iqbal, Z.; Mitra, S. J. Am. Chem. Soc. 2006, 128, 95. https://doi.org/10.1021/ja053003q
  6. Chiu, W.-M.; Chang, Y.-A.; Kuo, H.-Y.; Lin, M.-H.; Wen, H.-C. J. Appl. Poly. Sci. 2008, 108, 3024. https://doi.org/10.1002/app.27796
  7. Kumar, N. A.; Ganapathy, H. S.; Kim, J.-S.; Jeong, Y.-S.; Jeong, Y.-T. Eur. Polym. J. 2008, 44, 579. https://doi.org/10.1016/j.eurpolymj.2007.12.009
  8. Zhao, Y.; Qiu, Z.; Yang, W. J. Phys. Chem. B 2008, 112, 16461. https://doi.org/10.1021/jp805230e
  9. Chen, G.-X.; Shimizu, H. Polymer 2008, 49, 943. https://doi.org/10.1016/j.polymer.2008.01.014
  10. Liu, T.; Phang, I. Y.; Shen, L.; Chow, S. Y.; Zhang, W.-D. Macromolecules 2004, 37, 7214. https://doi.org/10.1021/ma049132t
  11. Gao, J.; Zhao, B.; Itkis, M. E.; Bekyarova, E.; Hu, H.; Kranak, V.; Yu, A.; Haddon, R. C. J. Am. Chem. Soc. 2006, 128, 7492. https://doi.org/10.1021/ja057484p
  12. Zeng, H.; Gao, C.; Yan, D. Adv. Funct. Mater. 2006, 16, 812. https://doi.org/10.1002/adfm.200500607
  13. Van Natta, F. J.; Hill, J. W.; Carruthers, W. H. J. Am. Chem. Soc. 1934, 56, 455. https://doi.org/10.1021/ja01317a053
  14. Sinha, V. R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Int. J. Pharm. 2004, 278, 1. https://doi.org/10.1016/j.ijpharm.2004.01.044
  15. Choi, D. S.; Kim, J. H.; Shin, U. S.; Deshmukh, R. R.; Song, C. E. Chem. Commun. 2007, 3482.

Cited by

  1. Effect of carbon nanotube coating of aligned nanofibrous polymer scaffolds on the neurite outgrowth of PC-12 cells vol.35, pp.7, 2011, https://doi.org/10.1042/CBI20100705
  2. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction vol.101A, pp.6, 2012, https://doi.org/10.1002/jbm.a.34470
  3. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation vol.104, pp.6, 2015, https://doi.org/10.1002/jbm.b.33432
  4. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration vol.27, pp.2, 2016, https://doi.org/10.1007/s10856-015-5640-y
  5. Production of Carbonaceous Materials with Various Lengths in Small Spheroidal Fullerenes and Long CNTs by Tunable Multi-walled Carbon Nanotube Cutting vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10876
  6. Core-Shell Structured Chitosan-Carbon Nanotube Membrane as a Positively Charged Drug Delivery System: Selective Loading and Releasing Profiles for Bovine Serum Albumin vol.37, pp.4, 2016, https://doi.org/10.1002/bkcs.10712
  7. Effect of Starch-MWCNT@Valine Nanocomposite on the Optical, Morphological, Thermal, and Adsorption Properties of Chitosan vol.25, pp.3, 2017, https://doi.org/10.1007/s10924-016-0874-4
  8. Preparation of Alkylated and Perfluorinated ZnPc-modified Carbon Nanotubes and their Application as Conductive Fillers for Poly(vinylidene fluoride) Composite Dielectrics vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11246
  9. -caprolactone)/Zinc Oxide Nanocomposites with High Zinc Oxide Content vol.50, pp.12, 2011, https://doi.org/10.1080/00222348.2011.623999
  10. Poly(ε-caprolactone)–carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells vol.8, pp.11, 2013, https://doi.org/10.2217/nnm.12.204
  11. Morphology, Nucleation, and Isothermal Crystallization Kinetics of Poly(ε-caprolactone) Mixed with a Polycarbonate/MWCNTs Masterbatch vol.9, pp.12, 2017, https://doi.org/10.3390/polym9120709
  12. Additive Manufacturing for Guided Bone Regeneration: A Perspective for Alveolar Ridge Augmentation vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113308
  13. Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect ratios with potential applications in drug delivery vol.8, pp.30, 2018, https://doi.org/10.1039/C7RA13553J
  14. Carbon Nanotubes in Nanocomposites and Hybrids with Hydroxyapatite for Bone Replacements vol.2, pp.None, 2011, https://doi.org/10.4061/2011/674287
  15. Positive Charge-doping on Carbon Nanotube Walls and Anion-directed Tunable Dispersion of the Derivatives vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1635
  16. Multifaceted prospects of nanocomposites for cardiovascular grafts and stents vol.10, pp.None, 2011, https://doi.org/10.2147/ijn.s80121
  17. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone vol.641, pp.None, 2015, https://doi.org/10.1016/j.cplett.2015.10.037
  18. Cover BKCS 10/2016 vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10515
  19. Barium-Encapsulated Biodegradable Polycaprolactone for Sulfate Removal vol.10, pp.12, 2011, https://doi.org/10.3390/w10121789
  20. Highly osteogenic and mechanically strong nanofibrous scaffolds based on functionalized multi-walled carbon nanotubes-reinforced electrospun keratin/poly(ε-caprolactone) vol.27, pp.None, 2021, https://doi.org/10.1016/j.mtcomm.2021.102401
  21. A Brief Review on the Influence of Ionic Liquids on the Mechanical, Thermal, and Chemical Properties of Biodegradable Polymer Composites vol.13, pp.16, 2011, https://doi.org/10.3390/polym13162597