DOI QR코드

DOI QR Code

Low-temperature Synthesis of Highly Crystalline BaxSr1-xTiO3 Nanoparticles in Aqueous Medium

  • Received : 2010.10.23
  • Accepted : 2010.11.02
  • Published : 2011.01.20

Abstract

We report the synthesis of $SrTiO_3$, $BaTiO_3$ and $Ba_xSr_{1-x}TiO_3$ (BST) nanoparticles (NPs) in various compositions (x = 0.25, 0.5 and 0.75) by an inorganic sol-gel method under a basic condition. Highly crystalline nanoparticles were formed at the reaction temperature of 25 - $100^{\circ}C$ from a stabilized titanium alkoxide in tetramethylammonium hydroxide (TMAH) and barium or strontium acetate in aqueous solution. Morphology and particle structure of the synthesized BST NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The BST nanoparticles in various compositions were monodispersed without mutual aggregation, and their average sizes were in the range of 70 - 80 nm. Furthermore, they showed highly crystallized perovskite phase over the whole composition range from $SrTiO_3$ to $BaTiO_3$. We also proposed a mechanism for the low-temperature formation of BST NPs.

Keywords

References

  1. Chandler, C. D.; Roger, C.; Smith, M. H. J. Chem. Rev. 1993, 93, 1205. https://doi.org/10.1021/cr00019a015
  2. Pramanik, N. C.; Anisha, N.; Abraham, P. A.; Panicker, N. R. J. Alloys Compd. 2009, 476, 524. https://doi.org/10.1016/j.jallcom.2008.09.020
  3. Bhella, A. S.; Guo, R.; Roy, R. Mater. Res. Innov. 2000, 4, 3. https://doi.org/10.1007/s100190000062
  4. Dutta, P. K.; Asiaie, R.; Akbar, S. K.; Zhu, W. Chem. Mater. 1994, 6, 1542. https://doi.org/10.1021/cm00045a011
  5. Wei, X.; Xu, G.; Ren, Z.; Wang, Y.; Shen, G.; Han, G. J. Cryst. Growth 2008, 310, 4132. https://doi.org/10.1016/j.jcrysgro.2008.04.039
  6. Ezhilvalavan, S.; Tseng, T. Y. Mater. Chem. Phys. 2000, 65, 227. https://doi.org/10.1016/S0254-0584(00)00253-4
  7. Carlson, C. M.; Rivkin, T. V.; Parilla, P. A.; Perkins, J. D.; Ginley, D. S.; Kozyrev, A. B.; Oshadchy, V. N.; Pavlov, A. S. Appl. Phys. Lett. 2000, 76, 1920. https://doi.org/10.1063/1.126212
  8. Zimmermann, F.; Voigts, M.; Weil, C.; Jakoby, R.; Wang, P.; Menesklou, W.; Tiffée, E. I. J. Eur. Ceram. Soc. 2001, 21, 2019. https://doi.org/10.1016/S0955-2219(01)00164-9
  9. Ioachim, A.; Toacsan, M. I.; Banciu, M. G.; Nedelcu, L.; Vasiliu, F.; Alexandru, H. V.; Berbecaru, C.; Stoica, G. Prog. Solid State Chem. 2007, 35, 513. https://doi.org/10.1016/j.progsolidstchem.2007.01.017
  10. Templeton, L. K.; Pask, J. A. J. Am. Ceram. Soc. 1959, 42, 212. https://doi.org/10.1111/j.1151-2916.1959.tb15455.x
  11. Mulder, B. J. J. Am. Ceram. Soc. Bull. 1970, 49, 990.
  12. Kumazawa, H.; Annen, S.; Sada, E. J. Mat. Sci 1995, 30, 4740. https://doi.org/10.1007/BF01153087
  13. Phule, P. P.; Raghavan, S.; Risbud, S. H. J. Am. Ceram. Soc. 1987, 70, C108.
  14. Li, Q.; Chen, D.; Jiao, X. J. Alloys Compd. 2003, 358, 76. https://doi.org/10.1016/S0925-8388(03)00126-9
  15. Brzozowski, E.; Castro, M. S. J. Eur. Ceram. Soc. 2000, 20, 2347. https://doi.org/10.1016/S0955-2219(00)00148-5
  16. Sharma, P. K.; Varadan, V. V.; Varadan, V. K. Chem. Mater. 2000, 12, 2590. https://doi.org/10.1021/cm000041u
  17. Roeder, R. K.; Slamovich, E. B. J. Am. Ceram. Soc. 1999, 82, 1665. https://doi.org/10.1111/j.1151-2916.1999.tb01984.x
  18. Gersten, B. L.; Lencka, M. M.; Riman, R. E. J. Am. Ceram. Soc. 2004, 87, 2025. https://doi.org/10.1111/j.1151-2916.2004.tb06355.x
  19. Xu, H.; Karadibhave, S.; Slamovich, E. B. J. Am. Ceram. Soc. 2007, 90, 2352. https://doi.org/10.1111/j.1551-2916.2007.01765.x
  20. Chen, C; Li, C.; Su, Q.; Peng, Q. Mater. Res. Bull. 2010, 45, 1762. https://doi.org/10.1016/j.materresbull.2010.06.032
  21. Viviani, M.; Buscaglia, M. T.; Testino, A.; Buscaglia, V.; Bowen, P.; Nanni, P. J. Eur. Ceram. Soc. 2003, 23, 1383. https://doi.org/10.1016/S0955-2219(02)00357-6
  22. Wada, S.; Tsurumi, T.; Chikamori, H.; Noma, T.; Suzuki, T. J. Cryst. Growth 2001, 229, 433. https://doi.org/10.1016/S0022-0248(01)01198-8
  23. Chemseddine, A.; Moritz, T. Eur. J. Inorg. Chem. 1999, 2, 235.
  24. Bradley, D. C. Adv. Chem. Series 1959, 23, 10. https://doi.org/10.1021/ba-1959-0023.ch002

Cited by

  1. Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications vol.1, pp.9, 2011, https://doi.org/10.1039/c1cy00259g
  2. Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis vol.2, pp.6, 2012, https://doi.org/10.1039/c2cy00490a
  3. Binary copper and iron oxides immobilized on silica-layered magnetite as a new reusable heterogeneous nanostructure catalyst for the Knoevenagel condensation in water vol.44, pp.10, 2018, https://doi.org/10.1007/s11164-018-3475-0
  4. Low-temperature syntheses of cubic BaTiO3 nanoparticles in highly basic aqueous solution vol.121, pp.1412, 2013, https://doi.org/10.2109/jcersj2.121.388
  5. Low‐Temperature Synthesis of Crystalline Inorganic/Metallic Nanocrystal‐Halloysite Composite Nanotubes vol.32, pp.7, 2014, https://doi.org/10.1002/cjoc.201400154
  6. PVDF-BaSrTiO3 nanocomposites for flexible electrical energy storage devices vol.3, pp.6, 2011, https://doi.org/10.1680/emr.14.00013
  7. Efficient selective 4-aminophenol sensing and antibacterial activity of ternary Ag2O3·SnO2·Cr2O3 nanoparticles vol.43, pp.26, 2011, https://doi.org/10.1039/c9nj01760g
  8. Local hardening of Raman phonons in BaxSr1−xTiO3 thin films deposited by r.f. sputtering vol.7, pp.4, 2011, https://doi.org/10.1088/2053-1591/ab81bd
  9. Synthesis of quaternary metal oxides immobilized on APTMS-coated magnetite: an efficient and reusable nanocatalyst for Knoevenagel condensation under green conditions vol.99, pp.6, 2011, https://doi.org/10.1139/cjc-2020-0421