DOI QR코드

DOI QR Code

The effect of different crystallization temperature of the hydroxyapatite coating produced by ion beam-assisted deposition on anodizing-treated titanium disks on human osteosarcoma cells

양극산화처리된 티타늄 표면에 이온빔보조증착방식을 이용한 수산화인회석 코팅시 소결온도의 차이가 조골세포에 미치는 영향

  • Pae, Ah-Ran (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Won, Hyun-Du (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Lee, Richard Sung-Bok (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Kim, Hyeong-Seob (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Woo, Yi-Hyung (Department of Prosthodontics, School of Dentistry, Kyung Hee University)
  • 배아란 (경희대학교 치의학전문대학원 보철학교실) ;
  • 원현두 (경희대학교 치의학전문대학원 보철학교실) ;
  • 이성복 (경희대학교 치의학전문대학원 보철학교실) ;
  • 김형섭 (경희대학교 치의학전문대학원 보철학교실) ;
  • 우이형 (경희대학교 치의학전문대학원 보철학교실)
  • Received : 2011.10.12
  • Accepted : 2011.10.24
  • Published : 2011.10.31

Abstract

Purpose: The aim of this study was to study the effect of hydroxyapatite (HA) coating crystallinity on the proliferation and differentiation of human osteosarcoma cells. Materials and methods: Surface roughness of the titanium disks increased by anodizing treatment and then HA was coated using ion beam-assisted deposition (IBAD). HA coating was crystallized by heat-treated at different temperature ($100^{\circ}C$, $300^{\circ}C$, $500^{\circ}C$, $800^{\circ}C$). According to the temperature, disks were divided into four groups (HA100, HA300, HA500, HA800). With the temperature, crystallinity of the HA coating was different. Anodized disks were used as control group. The physical properties of the disk surface were evaluated by surface roughness tests, XRD tests and SEM. The effect of the crystallinity of HA coating on HOS cells was studied in proliferation and differentiation. HOS cells were cultured on the disks and evaluated after 1, 3, 5, and 7 days. Growth and differentiation kinetics were subsequently investigated by evaluating cell proliferation and alkaline phosphatase activity. Results: Regardless of the heat-treated temperature, there is no difference on the surface roughness. Crystallinity of the HA was appeared in the groups of HA500, HA800. HOS cells proliferation, ALP activity were higher in HA500 and HA800 group than HA100 and HA300. Conclusion: Within the results of this limited study, heat treatment at $500^{\circ}C$ of HA coating produced by IBAD has shown greater effect on proliferation and differentiation of HOS cells. It is considered that further in vivo study will be necessary.

연구 목적: 이 연구의 목적은 수산화인회석 코팅 결정도가 조골세포의 분화에 미치는 영향을 조사하기 위함이다. 연구 재료 및 방법: 제작된 모든 시편은 양극산화과정을 거치면서 티타늄 표면에서 산화막을 형성하여 표면 거칠기를 증가시켰고 각 시편의 표면을 IBAD (ion beam-assisted deposition) 시스템을 이용하여 HA (hydroxyapatite) 코팅하였다. HA의 코팅이 완료된 시편들은 전기가열로(AJ-SB3, AJEON Heating Industrial Co., Ltd, Seoul, Korea)에 넣어 각 실험군별로 $100^{\circ}C$, $300^{\circ}C$, $500^{\circ}C$, $800^{\circ}C$까지 온도를 상승시켜 열처리하였다. HA 코팅을 실시하지 않은 군은 대조군으로 설정하고(control) 소결된 각각의 그룹은 HA100, HA300, HA500, HA800으로 구분하여 설정하였다. 시편 표면의 물리적 성질은 표면 거칠기 테스트, XRD, SEM으로 평가되었다. 수산화인회석 코팅의 결정도의 효과는 조골세포의 분화에 의해 연구되었는데 1, 3, 5, 7일 후에 평가되었다. 성장과 분화 역학은 세포증식능평가, ALP (alkaline phosphatase) 활성능 평가에 의해 조사되었다. 결과: 표면 거칠기는 양극산화 처리 후 IBAD 방식으로HA를 코팅하여도 그 거칠기에는 별 다른 차이가 없음을 보였다. X선 회절분석 결과 $100^{\circ}C$$300^{\circ}C$에서 소결한 시편은 HA의 결정화가 없는 무정형상태이며 $500^{\circ}C$$800^{\circ}C$에서 소결한 시편의 HA에서는 결정화 상태가 나타났다. 표면에 배양된 조골 세포의 증식능을 측정한 결과 1일과 3일에서는 각 실험군간의 유의할만한 차이가 있었으나, 5일과 7일에는 각 대조군과 실험군 모두 유의성 있는 차이를 보이지 않았다. ALP 활성능은 HA100과 HA300보다 HA500과 HA800이 더 높았다. 결론: 본 연구의 결과에서 양극산화처리된 티타늄표면에 이온빔보조증착법을 이용하여 수산화인회석을 코팅 후 소결할 때 $500^{\circ}C$의 소결온도가 수산화인회석코팅층의 결정화와 HOS (human osteosarcoma cells) 세포의 증식과 분화에 효과가 좋은 것으로 나타났다.

Keywords

References

  1. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1-review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004;17:536-43.
  2. Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 1995;29:65-72. https://doi.org/10.1002/jbm.820290110
  3. Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ. Plasma electrolysis for surface engineering. Surf Coat Technol 1999;122:73-93. https://doi.org/10.1016/S0257-8972(99)00441-7
  4. Li LH, Kim HW, Lee SH, Kong YM, Kim HE. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. J Biomed Mater Res A 2005;73:48-54.
  5. Brossa F, Cigada A, Chiesa R, Paracchini L, Consonni C. Postdeposition treatment effects on hydroxyapatite vacuum plasma spray coatings. J Mater Sci Mater Med 1994;5:855-7. https://doi.org/10.1007/BF01172024
  6. Rohrer MD, Sobczak RR, Prasad HS, Morris HF. Postmortem histologic evaluation of mandibular titanium and maxillary hydroxyapatite- coated implants from 1 patient. Int J Oral Maxillofac Implants 1999;14:579-86.
  7. Hanisch O, Cortella CA, Boskovic MM, James RA, Slots J, Wikesjo¨ UM. Experimental peri-implant tissue breakdown around hydroxyapatite- coated implants. J Periodontol 1997;68:59-66. https://doi.org/10.1902/jop.1997.68.1.59
  8. Liao H, Fartash B, Li J. Stability of hydroxyapatite-coatings on titanium oral implants (IMZ). 2 retrieved cases. Clin Oral Implants Res 1997;8:68-72. https://doi.org/10.1111/j.1600-0501.1997.tb00009.x
  9. Watson CJ, Tinsley D, Ogden AR, Russell JL, Mulay S, Davison EM. A 3 to 4 year study of single tooth hydroxylapatite coated endosseous dental implants. Br Dent J 1999;187:90-4.
  10. Jung YC, Han CH, Lee IS, Kim HE. Effects of ion beam-assisted deposition of hydroxyapatite on the osseointegration of endosseous implants in rabbit tibiae. Int J Oral Maxillofac Implants 2001;16:809-18.
  11. Le IS, Kim DH, Kim HE, Jung YC, Han CH. Biological performance of calcium phosphate films formed on commercially pure Ti by electron-beam evaporation. Biomaterials 2002;23: 609-15. https://doi.org/10.1016/S0142-9612(01)00147-8
  12. Overgaard S, Bromose U, Lind M, Bu¨nger C, S􀝚balle K. The influence of crystallinity of the hydroxyapatite coating on the fixation of implants. Mechanical and histomorphometric results. J Bone Joint Surg Br 1999;81:725-31. https://doi.org/10.1302/0301-620X.81B4.9282
  13. Oh S, Tobin E, Yang Y, Carnes DL Jr, Ong JL. In vivo evaluation of hydroxyapatite coatings of different crystallinities. Int J Oral Maxillofac Implants 2005;20:726-31.
  14. Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 2003;24:3893-907. https://doi.org/10.1016/S0142-9612(03)00261-8
  15. Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ, Koak JY. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004;25:2867-75. https://doi.org/10.1016/j.biomaterials.2003.09.048
  16. Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 1995;29: 1071-9. https://doi.org/10.1002/jbm.820290907
  17. Sul YT, Johansson CB, Jeong Y, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 2001;23:329-46. https://doi.org/10.1016/S1350-4533(01)00050-9
  18. Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002;23:491-501. https://doi.org/10.1016/S0142-9612(01)00131-4
  19. Hirai T, Ishijima T, Hashikawa Y, Yajima T. Osteoporosis and reduction of residual ridge in edentulous patients. J Prosthet Dent 1993;69:49-56. https://doi.org/10.1016/0022-3913(93)90240-O
  20. Lacefield WR. Hydroxyapatite coatings. Ann N Y Acad Sci 1988; 523:72-80. https://doi.org/10.1111/j.1749-6632.1988.tb38501.x
  21. Dunn B, Reisbick MH. Adherence of ceramic coatings on chromium-cobalt structures. J Dent Res 1976;55:328-32. https://doi.org/10.1177/00220345760550030701
  22. Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials 2005;26:327-37. https://doi.org/10.1016/j.biomaterials.2004.02.029
  23. Cook SD, Thomas KA, Kay JF, Jarcho M. Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop Relat Res 1988;232:225-43.
  24. Cui FZ, Luo ZS, Feng QL. Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition. J Mater Sci Mater Med 1997;8:403-5. https://doi.org/10.1023/A:1018597320022
  25. Wang S, Lacefield WR, Lemons JE. Interfacial shear strength and histology of plasma sprayed and sintered hydroxyapatite implants in vivo. Biomaterials 1996;17:1945-70.
  26. Choi JM, Kong YM, Kim S, Kim HE, Hwang CS, Lee IS. Formation and characterization of hydroxyapatite coating layer on Ti-based metal implant by electron-beam deposition. J Mater Res 1999;14:2980-5. https://doi.org/10.1557/JMR.1999.0399
  27. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J Jr, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 1995;29:389-401. https://doi.org/10.1002/jbm.820290314
  28. Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of TiO(2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res 2001;12:515-25. https://doi.org/10.1034/j.1600-0501.2001.120513.x
  29. Yang Y, Bumgardner JD, Cavin R, Carnes DL, Ong JL. Osteoblast precursor cell attachment on heat-treated calcium phosphate coatings. J Dent Res 2003;82:449-53. https://doi.org/10.1177/154405910308200609
  30. Chen J, Tong W, Cao Y, Feng J, Zhang X. Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment. J Biomed Mater Res 1997;34: 15-20. https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<15::AID-JBM3>3.0.CO;2-Q
  31. de Bruijn JD, Bovell YP, van Blitterswijk CA. Structural arrangements at the interface between plasma sprayed calcium phosphates and bone. Biomaterials 1994;15:543-50. https://doi.org/10.1016/0142-9612(94)90021-3
  32. Ferraz MP, Fernandes MH, Santos JD, Monteiro FJ. HA and double- layer HA-P2O5/CaO glass coatings: influence of chemical composition on human bone marrow cells osteoblastic behavior. J Mater Sci Mater Med 2001;12:629-38. https://doi.org/10.1023/A:1011245828046