DOI QR코드

DOI QR Code

Evaluation of Anti-Phytoplasma Properties of Surfactin and Tetracycline Towards Lime Witches' Broom Disease Using Real-Time PCR

  • Askari, N. (Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII)) ;
  • Jouzani, Gh. Salehi (Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII)) ;
  • Mousivand, M. (Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII)) ;
  • Nazari, A. Hagh (Department of Agronomy and Plant Breeding, College of Agriculture, Zanjan University) ;
  • Abbasalizadeh, S. (Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII)) ;
  • Soheilivand, S. (Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII))
  • Received : 2010.07.24
  • Accepted : 2010.10.12
  • Published : 2011.01.28

Abstract

The anti-phytoplasma activities of surfactin (derived from Iranian native Bacillus subtilis isolates) and tetracycline towards Candidatus "Phytoplasma aurantifolia", the agent of lime Witches' broom disease, were investigated. HPLC was used to quantify the surfactin production in four previously characterized native surfactin-producing strains, and the one producing the highest amount of surfactin (about 1,500 mg/l) was selected and cultivated following optimized production and extraction protocols. Different combinations of purified surfactin and commercial tetracycline were injected into artificially phytoplasmainfected Mexican lime seedlings using a syringe injection system. An absolute quantitative real-time PCR system was developed to monitor the phytoplasma population shifts in the lime phloem during 3 months following the injections. The results revealed that the injections of surfactin or tetracycline had a significant inhibitory effect on Candidatus "P. aurantifolia". However, the combined treatment with both surfactin and tetracycline (1:1) resulted in the highest inhibition due to a synergic effect, which suppressed the phytoplasma population from about $2{\times}10^5$ to less than 10 phytoplasma units/g plant tissue.

Keywords

References

  1. Abdel-Mawgoud, A. M., M. M. Aboulwafa, and N. Hassouna. 2008. Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 150: 305-325. https://doi.org/10.1007/s12010-008-8155-x
  2. Aldaghi, M., S. Massart, O. Dutrecq, A. Bertaccini, M. H. Jijakli, and P. Lepoivre. 2009. A simple and rapid protocol of crude DNA extraction from apple trees for PCR and real-time PCR detection of 'Candidatus Phytoplasma mali'. J. Virol. Methods 156: 96-101. https://doi.org/10.1016/j.jviromet.2008.10.011
  3. Alhudaib, K., Y. Arocha, M. Wilson, and P. Jones. 2009. Molecular identification, potential vectors and alternative hosts of the phytoplasma associated with a lime decline disease in Saudi Arabia. Crop Prot. 28: 13-18. https://doi.org/10.1016/j.cropro.2008.08.007
  4. Arocha, Y., B. Pinol, K. Acosta, R. Almeida, J. Devonshire, A. Van de Meene, E. Boa, and J. Lucas. 2009. Detection of phytoplasma and potyvirus pathogens in papaya (Carica papaya L) affected with 'Bunchy Top Symptom' (BTS) in eastern Cuba. Crop Prot. 28: 640-646. https://doi.org/10.1016/j.cropro.2009.03.020
  5. Bove, J. M., L. Danet, K. Bananej, N. Hassanzadeh, M. Taghizadeh, M. Salehi, and M. Garnier. 2000. Witches' broom disease of lime (WBDL) in Iran. Proceeding of the 14th Conference of the International Organization of Citrus Virologists, Riverside, California. pp. 207-212.
  6. Bertaccini, A. 2007. Phytoplasmas: Diversity, taxonomy, and epidemiology. Front. Biosci. 12: 673-689. https://doi.org/10.2741/2092
  7. Chiesa, S., S. Prati, G. Assante, D. Maffi, and P. A. Bianco. 2007. Activity of synthetic and natural compounds for phytoplasma control. Bull. Insectol. 60: 313-314.
  8. Chung, B. N. and G. S. Choi. 2002. Elimination of aster yellows phytoplasma from Dendranthema grandiflorum by application of oxytetracycline as a foliar spray. Plant Pathol. J. 18: 93-97. https://doi.org/10.5423/PPJ.2002.18.2.093
  9. Davies, D. A., H. C. Lynch, and J. Varley. 2001. The application of foaming for the recovery of surfactin from Bacillus subtilis ATCC 21332 cultures. Enzyme Microb. Technol. 28: 346-354. https://doi.org/10.1016/S0141-0229(00)00327-6
  10. Desai, J. D. and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64.
  11. Deng, S. J. and C. Hiruki. 1991. Genetic relatedness between two nonculturable mycoplasma-like organisms revealed by nucleic acid hybridyzation and polymerase chain reaction. Phytopathology 81: 1475-1479. https://doi.org/10.1094/Phyto-81-1475
  12. Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15.
  13. Fleckenstein, E., C. C. Uphoff, and H. G. Drexler. 1994. Effective treatment of mycoplasma contamination in cell lines with enrofloxacin (Baytril). Leukemia 8: 1424-1434.
  14. Garnier, M., L. Zreik, and J. M. Bove. 1991. Witches broom, a lethal mycoplasmal disease of lime in Sultanate of Oman and the United Arab Emirates. Plant Dis. 75: 546-551. https://doi.org/10.1094/PD-75-0546
  15. Ghosh, D. K., A. K. Das, S. Singh, S. J. Singh, and Y. A. Ahlawat. 1999. Occurrence of witches' broom, a new phytoplasma disease of acid lime (Citrus aurantifolia) in India. Plant Dis. 83: 302.
  16. Griffiths, H. M., W. A. Sinclair, C. D. Smart, and R. E. Davis. 1999. The phytoplasma associated with ash yellows and lilac witches'-broom: 'Candidatus phytoplasma fraxini'. Int. J. Syst. Bacteriol. 49: 1605-1614. https://doi.org/10.1099/00207713-49-4-1605
  17. Gundersen, D. E., I. M. Lee, D. A. Schaff, N. A. Harrison, C. J. Chang, R. E. Davis, and D. T. Kingsbury. 1996. Genomic diversity and differentiation among phytoplasma strains in 16S rRNA groups I (aster yellows and related phytoplasmas) and III (X-disease and related phytoplasmas). Int. J. Syst. Bacteriol. 46: 64-75. https://doi.org/10.1099/00207713-46-1-64
  18. Hsieh, F. C., M. C. Li, T. C. Lin, and S. S. Kao. 2004. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Current Microbiol. 49: 186-191.
  19. Ishiie, T., Y. Doi, K. Yora, and H. Asuyama. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development of mulberry dwarf disease. Ann. Phytopathol. Soc. Jpn. 33: 267-275. https://doi.org/10.3186/jjphytopath.33.267
  20. Jones, P. 2002. Phytoplasma plant pathogens, pp. 126-139. In M. Waller, J. M. Lenne, and S. J. Waller (eds.). Plant Pathologists Pocketbook, Part 12. CAB International, Oxford University Press, USA.
  21. Jung, H. Y., T. Sawayanagi, S. Kakizawa, H. Nishigawa, W. Wei, K. Oshima, et al. 2003. 'Candidatus phytoplasma ziziphi', a novel phytoplasma taxon associated with jujube witches'- broom disease. Int. J. Syst. Evol. Microbiol. 53: 1037-1041. https://doi.org/10.1099/ijs.0.02393-0
  22. Kim, S., J. Y. Kim, S. H. Kim, H. J. Bae, H. Yi, S. H. Yoon, et al. 2007. Surfactin from Bacillus subtilis displays antiproliferative effect via apoptosis induction, cell cycle arrest and survival signalling suppression. FEBS Lett. 581: 865-871. https://doi.org/10.1016/j.febslet.2007.01.059
  23. Kim, J. and N. Wang. 2009. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR. BMC 2: 37.
  24. Lim, J. H., B. K. Park, M. S. Kim, M. H. Hwang, M. H. Rhee, S. C. Park, and H. I. Yun. 2005. The anti-thrombotic activity of surfactins. J. Vet. Sci. 6: 353-355.
  25. Mireles, J. R., A. Toguchi, and R. M. Harshey. 2001. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. J. Bacteriol. 183: 5848-5854. https://doi.org/10.1128/JB.183.20.5848-5854.2001
  26. Mohamadipour, M., M. Mousivand, Gh. Salehi Jouzani, and S. Abasalizadeh. 2009. Molecular and biochemical characterization of Iranian surfactin producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gleosporiodes. Can. J. Microbiol. 55: 395-404. https://doi.org/10.1139/W08-141
  27. Navratil, M., D. Safarova, P. Valova, J. Franova, and M. Simkova. 2009. Phytoplasma associated with witches'-broom disease of Ulmus minor MILL in the Czech Republic: Electron microscopy and molecular characterization. Folia Microbiol. (Praha) 54: 37-42. https://doi.org/10.1007/s12223-009-0006-9
  28. Pagadoy, M., F. Peypoux, and J. Wallach. 2005. Solid-phase synthesis of surfactin, a powerful biosurfactant produced by Bacillus subtilis and of four analogues. Int. J. Peptide Res. Therap. 11: 195-202. https://doi.org/10.1007/s10989-005-6790-4
  29. Torres, E., E. Bertolini, M. Cambra, C. Monton, and M. P. Martin. 2005. Real-time PCR for simultaneous and quantitative detection of quarantine phytoplasmas from apple proliferation (16SrX) group. Mol. Cell. Probes 19: 334-340. https://doi.org/10.1016/j.mcp.2005.06.002
  30. Vollenbroich, D., G. Pauli, M. Ozel, and J. Vater. 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 63: 44-49.
  31. Wei, Y., C. Lai, and J. Chang. 2007. Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochem. 42: 40-45. https://doi.org/10.1016/j.procbio.2006.07.025
  32. Whang, L. M., P. W. G. Liu, C. C. Ma, and S. S. Cheng. 2008. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater. 151: 155-163. https://doi.org/10.1016/j.jhazmat.2007.05.063
  33. Xu, Q., G. Tian, Z. Wang, F. Kong, Y. Li, and H. Wang. 2009. Molecular detection and variability of jujube witches'-broom phytoplasmas from different cultivars in various regions of China. Wei Sheng Wu Xue Bao 49:1510-1519.
  34. Zhao, Y., Q. Sun, W. Wei, R. E. Davis, W. Wu, and Q. Liu. 2009. Candidatus phytoplasma tamaricis', a novel taxon discovered in witches'-broom-diseased salt cedar (Tamarix chinensis Lour). Int. J. Syst. Evol. Microbiol. 59: 2496-2504. https://doi.org/10.1099/ijs.0.010413-0
  35. Zreik, L., P. Carle, J. M. Bové, and M. Garnier. 1995. Characterization of the mycoplasma-like organism associated with witches'-broom disease of lime and proposition of a Candidatus taxon for the organism, "Candidatus phytoplasma aurantifolia". Int. J. Syst. Bacteriol. 45: 449-453. https://doi.org/10.1099/00207713-45-3-449
  36. Zaim, M. and A. Samad. 1995. Association of phytoplasmas with a witches-broom disease of Withania somnifera (L) Dunal in India. Plant Sci. 109: 225-229. https://doi.org/10.1016/0168-9452(95)04158-Q

Cited by

  1. Pest categorisation of Witches' broom disease of lime ( Citrus aurantifolia ) phytoplasma vol.15, pp.10, 2011, https://doi.org/10.2903/j.efsa.2017.5027
  2. Biological, environmental and socioeconomic threats to citrus lime production vol.125, pp.4, 2011, https://doi.org/10.1007/s41348-018-0160-x
  3. Selection of reference genes for quantitative PCR analysis in Citrus aurantifolia during phytoplasma infection vol.43, pp.5, 2011, https://doi.org/10.1007/s40858-018-0224-2
  4. Differential expression and phytohormone unbalance in Citrus aurantifolia plants during “sudden decline of lime”, a new phytoplasma disease of citrus vol.43, pp.6, 2011, https://doi.org/10.1007/s40858-018-0223-3