DOI QR코드

DOI QR Code

Effects of Dissolved Oxygen and Agitation on Production of Serratiopeptidase by Serratia Marcescens NRRL B-23112 in Stirred Tank Bioreactor and its Kinetic Modeling

  • Pansuriya, Ruchir C. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Singhal, Rekha S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai)
  • Received : 2010.09.27
  • Accepted : 2010.12.17
  • Published : 2011.04.28

Abstract

The effects of the agitation and aeration rates on the production of serratiopeptidase (SRP) in a 5-L fermentor (working volume 2-l) were systematically investigated using Serratia marcescens NRRL B-23112. The dissolved oxygen concentration, pH, biomass, SRP yield, and maltose utilization were all continuously measured during the course of the fermentation runs. The efficiencies of the aeration and agitation were evaluated based on the volumetric mass transfer coefficient ($K_La$). The maximum SRP production of 11,580 EU/ml with a specific SRP productivity of 78.8 EU/g/h was obtained with an agitation of 400 rpm and aeration of 0.075 vvm, which was 58% higher than the shake-flask level. The $K_La$ for the fermentation system supporting the maximum production (400 rpm, 0.075 vvm) was 11.3 $h^{-1}$. Under these fermentor optimized conditions, kinetic modeling was performed to understand the detailed course of the fermentation process. The resulting logistic and Luedeking-Piret models provided an effective description of the SRP fermentation, where the correlation coefficients for cell growth, SRP formation, and substrate consumption were 0.99, 0.94, and 0.84, respectively, revealing a good agreement between the model-predicted and experimental results. The kinetic analysis of the batch fermentation process for the production of SRP demonstrated the SRP production to be mixed growth associated.

Keywords

References

  1. Ahamed, A. and P. Vermette. 2010. Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor. Biochem. Eng. J. 49: 379-387. https://doi.org/10.1016/j.bej.2010.01.014
  2. Blakebrough, N. and M. Moresi. 1981. Scale-up of whey fermentation in a pilot-scale fermenter. Eur. J. Appl. Microbiol. Biotechnol. 12: 173-178. https://doi.org/10.1007/BF01008339
  3. Braun, V. and G. Schmitz. 1980. Excretion of a protease by Serratia marcescens. Arch. Microbiol. 124: 55-61. https://doi.org/10.1007/BF00407028
  4. Bromke, B. J. and J. M. Hammel. 1979. Regulation of extracellular protease formation by Serratia marcescens. Can. J. Microbiol. 25: 47-52. https://doi.org/10.1139/m79-008
  5. Casta eda-Agullo, M. 1956. Studies on the biosynthesis of extracellular proteases by bacteria: I. Serratia marcescens, synthetic and gelatin media. J. Gen. Physiol. 39: 369-375. https://doi.org/10.1085/jgp.39.3.369
  6. Decedue, C. J., E. A. Broussard, A. D. Larson, and H. D. Braymer. 1979. Purification and characterization of the extracellular proteinase of Serratia marcescens. Biochem. Biophys. Acta 569: 293-301. https://doi.org/10.1016/0005-2744(79)90065-2
  7. El Enshasy, H., A. Abuoul Enein, S. Helmy, and Y. El Azaly. 2008. Optimization of the industrial production of alkaline protease by Bacillus licheniformis in different production scales. Aust. J. Basic Appl. Sci. 2: 583-593.
  8. Hames, B. D. 1986. An introduction to polyacrylamide gel electrophoresis. In B. D. Hames and D. Rickwood (eds.). Gel Electrophoresis of Proteins: A Practical Approach. IRL Press, Oxford.
  9. Japanese pharmacopoeia. 2006 Official Monographs, 15th Ed. Part I. pp. 1735-1736.
  10. Klein, G. and W. Kullich. 2000. Short-term treatment of painful osteoarthritis of the knee with oral enzymes, a randomized, double-blind study versus diclofenac. Clin. Drug Invest. 19: 15-23. https://doi.org/10.2165/00044011-200019010-00003
  11. Lemke, L. T., D. A. Williams, V. F. Roche, and S. W. Zito. 2002. Pharmaceutical biotechnology - from nucleic acid to personalized medicine, pp. 132-140. In: Foye's Principles of Medicinal Chemistry, 6th Ed. Lippincott William and Wilkins.
  12. Luedeking, R. and E. L. Piret. 1959. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng. 1: 393-431. https://doi.org/10.1002/jbmte.390010406
  13. Mazzone, A., M. Catalani, and M. Costanzo. 1990. Evaluation of Serratia peptidase in acute or chronic inflammation of otorhinolaryngology pathology: A multicentre, double-blind, randomized trial versus placebo. J. Intern. Med. Res. 18: 379-388.
  14. McNeil, B. and L. Harvey. 1993. Viscous fermentation products. Crit. Rev. Biotechnol. 13: 275-304. https://doi.org/10.3109/07388559309075699
  15. Miyata, K., K. Tomoda, and M. Isono. 1971. Serratia protease Part III. Characteristics of the enzyme as a metalloenzyme. Agric. Biol. Chem. 35: 460-467. https://doi.org/10.1271/bbb1961.35.460
  16. Miyazaki, H., N. Yanagida, S. Horinouchi, and T. Beppu. 1990. Specific excretion into the medium of a serine protease from Serratia marcescens. Agric. Biol. Chem. 54: 2763-2765. https://doi.org/10.1271/bbb1961.54.2763
  17. Pansuriya, R. C. and R. S. Singhal. 2010. Evolutionary operation (EVOP) to optimize whey independent serratiopeptidase production from Serratia marcescens NRRL B-23112 J. Microbiol. Biotechnol. 20: 950-957. https://doi.org/10.4014/jmb.0911.11023
  18. Rajendran, A. and V. Thangavelu. 2008. Evaluation of various unstructured kinetic models for the production of protease by Bacillus sphaericus MTTC 511. Eng. Life Sci. 8: 179-185. https://doi.org/10.1002/elsc.200700033
  19. Rajendran, A. and V. Thangavelu. 2009. Statistical experimental design for evaluation of medium components for lipase production by Rhizopus arrhizus MTCC 2233. LWT Food Sci. Technol. 42: 985-999. https://doi.org/10.1016/j.lwt.2008.12.009
  20. Rajendran, A. V., A. B. Sundaramurthy, and V. Thangavelu. 2007. Unstructured kinetic models for lipase production by Bacillus sphaericus. Asian J. Microbiol. Biotechnol. Environ. Sci. 9: 683-690.
  21. Rusli, F. M., M. S. Mohamed, R. Mohamad, N. N. T. Puspaningsih, and A. B. Ariff. 2009. Kinetics of xylanase fermentation by recombinant Escherichia coli DH5 in shake flask culture. Am. J. Biochem. Biotechnol. 5: 110-118. https://doi.org/10.3844/ajbbsp.2009.110.118
  22. Salamone, P. R. and R. J. Wodzinski. 1997. Production, purification and characterization of a 50-kDa extracellular metalloprotease from Serratia marcescens. Appl. Microbiol. Biotechnol. 48: 317-324. https://doi.org/10.1007/s002530051056
  23. Shuler, M. and F. Kargi. 2002. Bioprocess Engineering, Basic Concepts, pp. 155-184. 2nd Ed. Prentice-Hall of India, New Delhi.
  24. Thilakavathi, M., T. Basak, and T. Panda. 2007. Modeling of enzyme production kinetics. Appl. Microbiol. Biotechnol. 73: 991-1007.
  25. Wise, W. S. 1951. The measurement of the aeration of culture media. J. Gen. Microbiol. 5: 167-177. https://doi.org/10.1099/00221287-5-1-167
  26. Zhang, X. W., T. Sun, X. N. Huang, X. Liu, D. X. Gu, and Z. Q. Tang. 1999. Recombinant streptokinase production by fedbatch cultivation of Escherichia coli. Enzyme. Microb. Technol. 24: 647-650. https://doi.org/10.1016/S0141-0229(98)00149-5

Cited by

  1. Enhanced Acetoin Production by Serratia marcescens H32 Using Statistical Optimization and a Two-stage Agitation Speed Control Strategy vol.17, pp.3, 2011, https://doi.org/10.1007/s12257-011-0587-4
  2. Kinetic modeling and scale up of lipoic acid (LA) production from Saccharomyces cerevisiae in a stirred tank bioreactor vol.36, pp.8, 2011, https://doi.org/10.1007/s00449-012-0859-1
  3. Screening of a biological control bacterium to fight avocado diseases: From agroecosystem to bioreactor vol.14, pp.None, 2018, https://doi.org/10.1016/j.bcab.2018.02.005
  4. Experimental and bioinformatics study for production of L -asparaginase from Bacillus licheniformis : a promising enzyme for medical application vol.9, pp.1, 2011, https://doi.org/10.1186/s13568-019-0751-3
  5. Production, characterization and bioinformatics analysis of L -asparaginase from a new Stenotrophomonas maltophilia EMCC2297 soil isolate vol.10, pp.1, 2020, https://doi.org/10.1186/s13568-020-01005-7
  6. Design, expression and functional assessment of novel engineered serratiopeptidase analogs with enhanced protease activity and thermal stability vol.38, pp.1, 2022, https://doi.org/10.1007/s11274-021-03195-z