DOI QR코드

DOI QR Code

The Adjuvant Effect of Sophy ${\beta}$-Glucan to the Antibody Response in Poultry Immunized by the Avian Influenza A H5N1 and H5N2 Vaccines

  • Received : 2010.11.24
  • Accepted : 2011.01.13
  • Published : 2011.04.28

Abstract

Avian influenza virus vaccines produced in oil-emulsified inactivated form with antigen content of at least 160 hemagglutinin units (HAU) induced immunity in birds. However, in addition to enhancing the effect of the adjuvant(s), other additional supplemented biological compounds included in inactivated vaccines could produce higher levels of antibody. We examined in chickens, Vietnamese ducks, and muscovy ducks the adjuvant effect of Sophy ${\beta}$-glucan (SBG), a ${\beta}$-1,3-1,6 glucan produced by the black yeast Aureobasidium pollulans strain AF0-202, when administered with an avian influenza H5 subtype vaccine. In Experiment 1, 40 chickens (ISA Brown hybrid), allocated to four groups of ten each, were immunized with Oil-H5N1(VN), Oil-H5N1(CN), Oil-H5N2(CN), and saline (control group), respectively. In Experiment 2, chickens (ISA Brown hybrid), muscovy ducks (French hybrid), and Vietnamese ducks (indigenous Vietnamese) were used to further assess the effect of SBG on immunogenicity of the Oil-H5N1(VN) Vietnamese vaccine. ELISA and hemagglutination inhibition (HI) assays were used to assess the antibody response. The H5 subtype vaccines initiated significantly higher immune responses in the animals dosed with SBG, with 1.0-1.5 $log_2$ higher HI titers and 10-20% ELISA seroconversion, compared with those not dosed with ${\beta}$-glucan. Notably, some of the animals dosed with SBG induced HI titers higher than 9.0 $log_2$ following boosting immunization. Taken together, our serial studies indicated that SBG is a potential effector, such as enhancing the immune response to the H5 vaccines tested.

Keywords

References

  1. Allan, W. H., J. E. Lancaster, and B. Toth. 1978. Newcastle disease vaccines, their production and use, pp. 57-62. In: FAO Animal Production Health, Series-10. United Nations, Rome.
  2. Brown, G. D. and S. Gordon. 2005. Immune recognition of fungal $\beta$-glucans [Review]. Cell Microbiol. 7: 471-479. https://doi.org/10.1111/j.1462-5822.2005.00505.x
  3. Brown, G. D., P. R. Taylor, D. M. Reid, J. A. Willment, D. L. Williams, L. Martinez-Pomares, S. Y. C. Wong, and S. Gordon. 2002. Dectin-1 is a major $\beta$-glucan receptor on macrophages. J. Exp. Med. 196: 407-412. https://doi.org/10.1084/jem.20020470
  4. Chae, B. J., J. D. Lohakare, W. K. Moon, S. L. Lee, Y. H. Park, and T. W. Hahn. 2006. Effects of supplementation of $\beta$-glucan on the growth performance and immunity in broilers. Res. Vet. Sci. 80: 291-298. https://doi.org/10.1016/j.rvsc.2005.07.008
  5. Chen, J. and R. Seviour. 2007. Medicinal importance of fungal b-(1/3), (1/6)-glucans. Mycol. Res. 111: 635-652. https://doi.org/10.1016/j.mycres.2007.02.011
  6. Cheng, Y., D. Lee, C. Wen, and C. Weng. 2004. Effects of betaglucan supplementation on lymphocyte proliferation, macrophage chemotaxis and specific immune responses in broilers. Asian- Aust. J. Anim. Sci. 17: 1145-1149.
  7. Dillon, S., S. Agrawal, K. Banerjee, J. Letterio, T. L. Denning, K. Oswald-Richter, et al. 2006. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 116: 916-928. https://doi.org/10.1172/JCI27203
  8. DiNapoli, J. M., L. Yang, A. Jr. Suguitan, S. Elankumaran, D. W. Dorward, B. R. Murphy, S. K. Samal, P. L. Collins, and A. Bukreyev. 2007. Immunization of primates with a Newcastle disease virus-vectored vaccine via the respiratory tract induces a high titer of serum neutralizing antibodies against highly pathogenic avian influenza virus. J. Virol. 81: 11560-11568. https://doi.org/10.1128/JVI.00713-07
  9. Dung Nguyen, T., T. Vinh Nguyen, D. Vijaykrishna, R. G. Webster, Y. Guan, J. S. M. Peiris, and G. J. Smith. 2008. Multiple sublineages of influenza A virus (H5N1), Vietnam, 2005-2007. Emerg. Infect. Dis. 14: 632-636. https://doi.org/10.3201/eid1404.071343
  10. Goetz, S. K., E. Spackman, C. Hayhow, and D. E. Swayne. 2008. Assessment of reduced vaccine dose on efficacy of an inactivated avian influenza vaccine against an H5N1 highpathogenicity avian influenza virus. J. Appl. Poult. Res. 17: 145-150. https://doi.org/10.3382/japr.2007-00098
  11. Hobson, D., R. L. Curry, A. S. Beare, and A. Ward-Gardner. 1972. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J. Hyg. 70: 767-777. https://doi.org/10.1017/S0022172400022610
  12. Huff, G. R., W. E. Huff, N. C. Rath, and G. Tellez. 2006. Limited treatment with beta-1,3/1,6-glucan improves production values of broiler chickens challenged with Escherichia coli. Poult. Sci. 85: 613-618.
  13. Ichinohe, T., A. Ainai, T. Nakamura, Y. Akiyama, J. Maeyama, T. Odagiri, et al. 2010. Induction of cross-protective immunity against influenza A virus H5N1 by an intranasal vaccine with extracts of mushroom mycelia. J. Med. Virol. 82: 128-137. https://doi.org/10.1002/jmv.21670
  14. Ikewaki, N., N. Fujii, T. Onaka, S. Ikewaki, and H. Inoko. 2007. Immunological actions of Sophy $\beta$-glucan (beta-1,3-1,6 glucan), currently available commercially as a health food supplement. Microbiol. Immunol. 51: 861-873.
  15. Le, T. H., K. X. T. Le, P. V. Cuong, N. T. K. Cuc, T. B. Le, Y. Ikeue, Y. Watanabe, and T. Agatsuma. 2010. Adjuvant effects of Sophy$\beta$-glucan on H5N1 and H5N2 vaccination using a mouse model. Trop. Med. Health 38: 23-27. https://doi.org/10.2149/tmh.2009-13
  16. Li, B., D. Cramer, S. Wagner, R. Hansen, C. King, S. Kakar, C. Ding, and J. Yan. 2007. Yeast glucan particles activate murine resident macrophages to secrete proinflammatory cytokines via MyD88- and Syk kinase-dependent pathways. Clin. Immunol. 124: 170-181. https://doi.org/10.1016/j.clim.2007.05.002
  17. Moro de Sousa, R. L., H. J. Montassier, and A. A. Pinto. 2000. Detection and quantification of antibodies to Newcastle disease virus in ostrich and rhea sera using a liquid phase blocking enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol. 7: 940-944.
  18. Peyre, M., G. Fusheng, S. Desvaux, and F. Roger. 2009. Avian influenza vaccines: A practical review in relation to their application in the field with a focus on the Asian experience. Epidemiol. Infect. 137: 1-21. https://doi.org/10.1017/S0950268808001039
  19. Soltanian, S., E. Stuyven, E. Cox, P. Sorgeloos, and P. Bossier. 2009. $\beta$Glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol. 35: 109-138. https://doi.org/10.1080/10408410902753746
  20. Suzuki, Y., Y. Adachi, N. Ohno, and T. Yadomae. 2001. Th1/ Th2-Balancing immunomodulating activity of gel-forming (1-->3)- $\beta$glucans from fungi. Biol. Pharm. Bull. 24: 811-819. https://doi.org/10.1248/bpb.24.811
  21. Swayne, D. E. 2006. Principles for vaccine protection in chickens and domestic waterfowl against avian influenza Emphasis on asian H5N1 high pathogenicity avian influenza. Ann. N.Y. Acad. Sci. 1081: 174-181. https://doi.org/10.1196/annals.1373.021
  22. Swayne, D. E., J. R. Beck, M. Garcia, and H. D. Stone. 1999. Influence of virus strain and antigen mass on efficacy of H5 avian influenza inactivated vaccines. Avian Pathol. 28: 245- 255. https://doi.org/10.1080/03079459994731
  23. Takahashi, Y., H. Hasegawa, Y. Hara, M. Ato, A. Ninomiya, H. Takagi, et al. 2009. Protective immunity afforded by inactivated H5N1 (NIBRG-14) vaccine requires antibodies against both hemagglutinin and neuraminidase in mice. J. Infect. Dis. 199: 1629-1637. https://doi.org/10.1086/598954
  24. Taylor, P. R., G. D. Brown, D. M. Reid, J. A. Willment, L. Martinez-Pomares, S. Gordon, and S. Y. C. Wong. 2002. The $\beta$- glucan receptor Dectin-1 is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169: 3876-3882.
  25. Tian, G., S. Zhang, Y. Li, Z. Bu, P. Liu, J. Zhou, et al. 2005. Protective efficacy in chickens, geese and ducks of an H5N1- inactivated vaccine developed by reverse genetics. Virology 341: 153-162. https://doi.org/10.1016/j.virol.2005.07.011
  26. Wasser, S. P. and A. L. Weis. 1999. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: A modern perspective. Crit. Rev. Immunol. 19: 65-96.
  27. WHO. 2002. Manual on Animal Influenza Diagnosis and Surveillance.
  28. Yoon, H. S., J. W. Kim, H. R. Cho, S. B. Moon, H. D. Shin, K. J. Yang, H. S. Lee, Y. S. Kwon, and S. K. Ku. 2010. Immunomodulatory effects of Aureobasidium pullulans SM- 2001 exopolymers on cyclophosphamide-treated mice. J. Microbiol. Biotechnol. 20: 433-440.

Cited by

  1. Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam vol.3, pp.2, 2011, https://doi.org/10.7774/cevr.2014.3.2.117
  2. A potential protein-based vaccine for influenza H5N1 from the recombinant HA1 domain of avian influenza A/H5N1 expressed in Pichia pastoris vol.9, pp.12, 2011, https://doi.org/10.2217/fvl.14.93
  3. Effect of nutritional interventions with quercetin, oat hulls, β-glucans, lysozyme and fish oil on performance and health status related parameters of broilers chickens vol.59, pp.5, 2011, https://doi.org/10.1080/00071668.2018.1496402
  4. Role of Immune Dysregulation in Increased Mortality Among a Specific Subset of COVID-19 Patients and Immune-Enhancement Strategies for Combatting Through Nutritional Supplements vol.11, pp.None, 2011, https://doi.org/10.3389/fimmu.2020.01548
  5. Review: β-glucans as Effective Antibiotic Alternatives in Poultry vol.26, pp.12, 2011, https://doi.org/10.3390/molecules26123560
  6. β-glucans: wide-spectrum immune-balancing food-supplement-based enteric (β-WIFE) vaccine adjuvant approach to COVID-19 vol.17, pp.8, 2021, https://doi.org/10.1080/21645515.2021.1880210
  7. β‑glucan vaccine adjuvant approach for cancer treatment through immune enhancement (B‑VACCIEN) in specific immunocompromised populations (Review) vol.47, pp.1, 2011, https://doi.org/10.3892/or.2021.8225
  8. Ingestion of beta‐glucans could stimulate longer‐lasting cellular immunity upon administration of COVID‐19 vaccines vol.45, pp.11, 2011, https://doi.org/10.1111/jfbc.13959
  9. β-Glucans Could Be Adjuvants for SARS-CoV-2 Virus Vaccines (COVID-19) vol.18, pp.23, 2011, https://doi.org/10.3390/ijerph182312636