DOI QR코드

DOI QR Code

Evidence of an Alternative Route of Cellobiase Secretion in the Presence of Brefeldin A in the Filamentous Fungus Termitomyces clypeatus

  • Banik, Samudra Prosad (Department of Microbiology, Maulana Azad College) ;
  • Pal, Swagata (Drug Development and Biotechnology, Indian Institute of Chemical Biology) ;
  • Chowdhury, Sudeshna (Drug Development and Biotechnology, Indian Institute of Chemical Biology) ;
  • Ghorai, Shakuntala (Department of Microbiology, Maulana Azad College) ;
  • Khowala, Suman (Drug Development and Biotechnology, Indian Institute of Chemical Biology)
  • Received : 2010.09.27
  • Accepted : 2011.01.11
  • Published : 2011.04.28

Abstract

Secretion of cellobiase occurred in a brefeldin A (BFA) uninhibited manner in the filamentous fungus Termitomyces clypeatus. Fluorescence confocal microscopy revealed that application of the drug at a concentration of 50 ${\mu}g$/ml caused arrest of Spitzenkorper assembly at the hyphal tip. This resulted in greater than 30% inhibition of total protein secretion in the culture medium. However, the cellobiase titer increased by 17%, and an additional 13% was localized in the vacuolar fraction en route secretion. The secretory vacuoles formed in the presence of the drug were also found to be bigger (68 nm) than those in the control cultures (40 nm). The enzyme secreted in the presence and absence of BFA revealed a single activity band in both cases in native PAGE and had similar molecular masses (approx. 120 kDa) in SDS-PAGE. The BFA enzyme retained 72% of native glycosylation. It also exhibited a higher stability and retained 98% activity at $50^{\circ}C$, 93.3% activity at pH 9, 63.64% activity in the presence of 1M guanidium hydrochloride, and 50% activity at a glucose concentration of 10 mg/ml in comparison to 68% activity, 75% activity, 36% activity, and 19% activity for the control enzyme, respectively. The observations collectively aimed at the operation of an alternative secretory pathway, distinct from the target of brefeldin A, which bypassed the Golgi apparatus, but still was able to deliver the cargo to the vacuoles for secretion. This can be utilized in selectively enhancing the yield and stability of glycosidases for a successful industrial recipe.

Keywords

References

  1. Andrew, N. S., E. V. Eneyskaya, L. S. Isaeva-Ivanova, K. A. Shabalin, A. M. Golubev, and K. N. Neustroev. 1997. The carbohydrate moiety of $\alpha$-galactosidase from Trichoderma reesei. Glycoconj. J. 14: 897-905. https://doi.org/10.1023/A:1018510626305
  2. Archer, D. B. and J. F. Peberdy. 1997. The molecular biology of secreted enzyme production by fungi. Crit. Rev. Biotechnol. 17: 273-306. https://doi.org/10.3109/07388559709146616
  3. Bourett, T. M. and R. J. Howard. 1996. Brefeldin A-induced structural changes in the endomembrane system of a filamentous fungus, Magnaporthe grisea. Protoplasma 190: 151-163. https://doi.org/10.1007/BF01281314
  4. Brown, W. and O. Anderson. 1971. Preparation of xylodextrins and their separation by gel chromatography J. Chromatogr. 57: 255-263.
  5. Cole, L., D. Davies, G. J. Hyde, and A. E. Ashford. 2000. Brefeldin A affects growth, endoplasmic reticulum, Golgi bodies, tubular vacuole system, and secretory pathway in Pisolithus tinctorius. Fungal Genet. Biol. 29: 95-106. https://doi.org/10.1006/fgbi.2000.1190
  6. Conesa, A., D. Jeenes, D. B. Archer, C. A. M. J. J. van den Hondel, and P. J. Punt. 2002. Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl. Environ. Microbiol. 68: 846-851. https://doi.org/10.1128/AEM.68.2.846-851.2002
  7. Conesa, A., P. J. Punt, N. V. Luijk, and C. A. M. J. J. van den Hondel. 2001. The secretion pathway in filamentous fungi: A biotechnological View. Fungal Genet. Biol. 33: 155-171. https://doi.org/10.1006/fgbi.2001.1276
  8. Dawson, R. M. C., D. C. Elliot, W. M. Elliot, and K. M. Jones (eds.). 1986. Data for Biochemical Research, 3rd Ed. Oxford University Press, New York.
  9. Ghorai, S., S. Pal, S. Chowdhury, and S. Khowala. 2010. Enhanced activity and stability of cellobiase ($\beta$-glucosidase: EC 3.2.1.21) produced in presence of 2-deoxy D-glucose from the fungus Termitomyces clypeatus. Carbohydr. Res. 345: 1015- 1022. https://doi.org/10.1016/j.carres.2010.02.021
  10. Gordon, C. L., V. Khalaj, A. F. Ram, D. B. Archer, J. L. Brookman, A. P. Trinci, et al. 2000. Glucoamylase::green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. Microbiology 146: 415-426.
  11. Harris, S. D., N. D. Read, R. W. Roberson, B. Shaw, S. Seiler, M. Plamann, and M. Momany 2005. Polarisome meets Spitzenkörper. Microscopy, genetics, and genomics converge. Eukaryot. Cell 4: 225-229. https://doi.org/10.1128/EC.4.2.225-229.2005
  12. Helena, K. M. N., S. J. Te'o Valentino, and P. L. Bergquist. 2005. Heterologous protein expression in filamentous fungi. Trends Biotechnol. 23: 468-474. https://doi.org/10.1016/j.tibtech.2005.06.002
  13. Hubbard, M. A. and S. G. Kaminskyj. 2008. Rapid tip-directed movement of Golgi equivalents in growing Aspergillus nidulans hyphae suggests a mechanism for delivery of growth-related materials. Microbiology 154: 1544-1553. https://doi.org/10.1099/mic.0.2007/014811-0
  14. Jackson, C. L. and J. E. Casanova. 2000. Turning on ARF: The Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol. 10: 60-67. https://doi.org/10.1016/S0962-8924(99)01699-2
  15. Khalaj, V., J. L. Brookman, and G. D. Robson. 2001. A study of the protein secretory pathway of Aspergillus niger using a glucoamylase-GFP fusion protein. Fungal Genet. Biol. 32: 55- 65. https://doi.org/10.1006/fgbi.2000.1245
  16. Khowala, S. and S. Sengupta. 1992. Secretion of glucosidase by Termitomyces clypeatus: Regulation by carbon catabolite products. Enzyme Microb. Technol. 14: 144-149. https://doi.org/10.1016/0141-0229(92)90173-L
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685. https://doi.org/10.1038/227680a0
  18. Levanony, H., R. Rubin, Y. Altschuler, and G. Galili. 1992. Evidence for a novel route of wheat storage proteins to vacuoles. J. Cell Biol. 119: 1117-1128. https://doi.org/10.1083/jcb.119.5.1117
  19. Lippincott-Schwartz, J., L. C. Yuan, J. S. Bonifacino, and R. D. Klausner. 1989. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for membrane cycling from Golgi to ER. Cell 56: 801-813. https://doi.org/10.1016/0092-8674(89)90685-5
  20. Moreno, R. D., J. R. Santos, P. Sutovsky, E. K. L. Chan, and G. Schatten. 2000. Vesicular traffic and golgi apparatus dynamics during mammalian spermatogenesis: Implications for acrosome architecture. Biol. Reprod. 63: 89-98. https://doi.org/10.1095/biolreprod63.1.89
  21. Mukherjee, S. and S. Khowala. 2002. Secretion of cellobiase is mediated via vacuoles in Termitomyces clypeatus. Biotechnol. Prog. 18: 1195-1200. https://doi.org/10.1021/bp020116u
  22. Mukherjee, S., S. Chowdhury, S. Ghorai, S. Pal, and S. Khowala. 2006. Cellobiase from Termitomyces clypeatus: Activity and secretion in presence of glycosylation inhibitors. Biotechnol. Lett. 28: 1773-1778. https://doi.org/10.1007/s10529-006-9150-3
  23. Nevalainen, K. M. H. 2001. Strain improvement in filamentous fungi - an overview. Appl. Mycol. Biotechnol. 1: 289-304.
  24. Pal, S., S. P. Banik, S. Ghorai, S. Chowdhury, and S. Khowala. 2010. Purification and characterization of a thermostable intracellular beta-glucosidase with transglycosylation properties from filamentous fungus Termitomyces clypeatus. Bioresour. Technol. 101: 2412-2420. https://doi.org/10.1016/j.biortech.2009.11.064
  25. Parris, G. 2008. 2-Deoxy-d-glucose as a potential drug against fusogenic viruses including HIV. Med. Hypotheses 70: 776- 782. https://doi.org/10.1016/j.mehy.2007.08.021
  26. Punt, P. J., I. A. van Gemeren, J. Drint-Kuijvenhoven, J. G. Hessing, G. M. van Muijlwijk-Harteveld, A. Beijersbergen, C. T. Verrips, and C. A. M. J. J. van den Hondel. 1998. Analysis of the role of the gene bipA, encoding the major endoplasmic reticulum chaperone protein, in the secretion of homologous and heterologous proteins in black aspergilli. Appl. Microbiol. Biotechnol. 50: 447-454. https://doi.org/10.1007/s002530051319
  27. Riquelme, M., S. Bartnicki-Garc , J. M. Gonzalez-Prieto, E. Sanchez-Leon, J. A. Verdin-Ramos, A. Beltran-Aguilar, and M. Freitag. 2007. Spitzenkorper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot. Cell 6: 1853-1864. https://doi.org/10.1128/EC.00088-07
  28. Ritzenthaler, C., A. Nebenführ, A. Movafeghi, C. S. Garauda, L. Behniac, P. Pimplc, L. A. Staehelin, and D. G. Robinson. 2002. Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14: 237-261. https://doi.org/10.1105/tpc.010237
  29. Roy, S. B., A. K. Ghosh, S. Sengupta, and S. Sengupta. 1994. Development of high-molar-mass cellobiase complex by spontaneous protein-protein interaction in the culture filtrate of Termitomyces clypeatus. Folia Microbiol. 39: 463-470. https://doi.org/10.1007/BF02814063
  30. Rupes, I., W. Z. Mao, H. Aström, and M. Raudaskoski. 1995. Effects of nocodazole and brefeldin A on microtubule cytoskeleton and membrane organization in the homobasidiomycete Schizophyllum commune. Protoplasma 185: 212-221. https://doi.org/10.1007/BF01272862
  31. Saha, R., S. Burman Roy, and S. Sengupta 2002. Stabilization and improvement of catalytic activity of a low molar mass cellobiase by cellobiase-sucrase aggregation in the culture filtrate of Termitomyces clypeatus. Biotechnol. Prog. 18: 1240- 1248. https://doi.org/10.1021/bp020106t
  32. Saleheimo, M., M. Valkonen, and M. Penttila. 2003. Activation mechanisms of the HACI-mediated unfolded protein response in filamentous fungi. Mol. Microbiol. 47: 1149-1161. https://doi.org/10.1046/j.1365-2958.2003.03363.x
  33. Satiat-Jeunemaitre, B., L. Cole, T. Bourett, R. Howard, and C. Hawes. 2003. Brefeldin A effects in plant and fungal cells: Something new about vesicle trafficking? J. Microsc. 181: 162-177.
  34. Silva, T. M., F. B. Dos Reis Almeida, A. R. de Lima Damasio, A. Maller, M. Michelin, J. A. Jorge, et al. 2010. Tunicamycin inhibition of N-glycosylation of $\alpha$-glucosidase from Aspergillus niveus: Partial influence on biochemical properties. Biotechnol. Lett. 32: 1449-1455. https://doi.org/10.1007/s10529-010-0304-y
  35. Sukumaran, R., R. R. Singhania, and A. Pandey. 2005. Microbial cellulases: Production, applications and challenges J. Sci. Ind. Res. 64: 832-844.
  36. Torralba, S. and I. B. Heath. 2002. Analysis of three separate probes suggests the absence of endocytosis in Neurospora crassa hyphae. Fungal Genet. Biol. 37: 221-232. https://doi.org/10.1016/S1087-1845(02)00513-3
  37. Vainstein, M. H. and J. F. Peberdy. 1991. Regulation of invertase in Aspergillus nidulans: Effect of different carbon sources. J. Gen. Microbiol. 37: 315-321. https://doi.org/10.2323/jgam.37.315
  38. Vorisek, J. 1995. Ultracytochemical evidence of Golgi functions in microvesicles at all phases of cell cycle in Saccharomyces cerevisiae. Micron 26: 175-190. https://doi.org/10.1016/0968-4328(95)00003-M
  39. Ward, M. 2006. Industrial aspects of protein production by filamentous fungi. Microb. Cell Fact. 5(Suppl 1): S3. https://doi.org/10.1186/1475-2859-5-S1-S3
  40. Wiebe, G. W. 2003. Stable production of recombinant proteins in filamentous fungi - problems and improvements. Mycologist 17: 140-144. https://doi.org/10.1017/S0269915X03003033
  41. Zhong, Y., X. Wang, and T. Wang. 2008. Recent advances in the production of heterologous proteins in filamentous fungi. Sheng Wu Gong Cheng Xue Bao 24: 531-540.

Cited by

  1. Dissecting Cellular Function and Distribution of β-Glucosidases in Trichoderma reesei vol.12, pp.3, 2011, https://doi.org/10.1128/mbio.03671-20