DOI QR코드

DOI QR Code

Coenzyme $Q_{10}$ Production by Sphingomonas sp. ZUTE03 with Novel Precursors Isolated from Tobacco Waste in a Two-Phase Conversion System

  • Qiu, Lequan (College of Biological and Environmental Engineering, Zhejiang University of Technology) ;
  • Wang, Weijian (College of Biological and Environmental Engineering, Zhejiang University of Technology) ;
  • Zhong, Weihong (College of Biological and Environmental Engineering, Zhejiang University of Technology) ;
  • Zhong, Li (College of Biological and Environmental Engineering, Zhejiang University of Technology) ;
  • Fang, Jianjun (College of Biological and Environmental Engineering, Zhejiang University of Technology) ;
  • Li, Xuanzhen (College of Biological and Environmental Engineering, Zhejiang University of Technology) ;
  • Wu, Shijin (College of Biological and Environmental Engineering, Zhejiang University of Technology) ;
  • Chen, Jianmeng (College of Biological and Environmental Engineering, Zhejiang University of Technology)
  • Received : 2010.12.13
  • Accepted : 2011.01.31
  • Published : 2011.05.28

Abstract

Coenzyme $Q_{10}$ ($CoQ_{10}$) is a widely used supplement in heart diseases treatment or antioxidative dietary. The microbial production of $CoQ_{10}$ was enhanced by addition of solanesol and novel precursors recovered from waste tobacco. The novel precursors were separated by silica gel and identified as ${\alpha}$-linolenic acid (LNA) and butylated hydroxytoluene (BHT) based on the effect on $CoQ_{10}$ production and GC-MS. The effects of novel precursors on $CoQ_{10}$ production by Sphingomonas sp. ZUTE03 were further evaluated in a two-phase conversion system. The precursor's combination of solanesol (70 mg/l) with BHT (30 mg/l) showed the best effect on the improvement of $CoQ_{10}$ yield. A maximal $CoQ_{10}$ productivity (9.5 mg $l^{-1}$ $h^{-1}$) was achieved after 8 h conversion, with a molar conversion rate of 92.6% and 92.4% on BHT and solanesol, respectively. The novel precursors, BHT and LNA in crude extracts from waste tobacco leaves, might become potential candidates for application in the industrial production of $CoQ_{10}$ by microbes.

Keywords

References

  1. Bule, M. V. and R. S. Singhal. 2009. Use of carrot juice and tomato juice as natural precursors for enhanced production of ubiquinone-10 by Pseudomonas diminuta NCIM 2865. Food Chem. 116: 302-305. https://doi.org/10.1016/j.foodchem.2009.02.050
  2. Cheng, B., Q. P. Yuan, X. X. Sun, and W. J. Li. 2010. Enhanced production of coenzyme Q10 by over expressing HMG-CoA reductase and induction with arachidonic acid in Schizosaccharomyces pombe. Appl. Biochem. Biotechnol. 160: 523-531. https://doi.org/10.1007/s12010-008-8386-x
  3. Choi, J. H., Y. W. Ryu, and J. H. Seo. 2005. Biotechnological production and applications of coenzyme $Q_{10}$. Appl. Microbiol. Biotechnol. 68: 9-15. https://doi.org/10.1007/s00253-005-1946-x
  4. Corinne, P. C., M. B. Adam, and J. M. Vincent. 2007. Current prospects for the production of coenzyme $Q_{10}$ in microbes. Trends Biotechnol. 25: 514-521. https://doi.org/10.1016/j.tibtech.2007.08.008
  5. Gu, S. B., J. M. Yao, Q. P. Yuan, P. J. Xue, Z. M. Zheng, L. Wang, and Z. L. Yu. 2006. A novel approach for improving the productivity of ubiquinone-10 producing strain by low-energy ion beam irradiation. Appl. Microbiol. Biotechnol. 72: 456-461. https://doi.org/10.1007/s00253-005-0283-4
  6. Gu, S. B., J. M. Yao, Q. P. Yuan, P. J. Xue, Z. M. Zheng, and Z. L. Yu. 2006. Kinetics of Agrobacterium tumefaciens ubiquinone-10 batch production. Process Biochem. 41: 1908- 1912. https://doi.org/10.1016/j.procbio.2006.04.002
  7. Ha, S. J., S. Y. Kim, J. H. Seo, H. J. Moon, K. M. Lee, and J. K. Lee. 2007. Controlling the sucrose concentration increases coenzyme Q10 production in fed-batch culture of Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol. 76: 109-116. https://doi.org/10.1007/s00253-007-0995-8
  8. Ha, S. J., S. Y. Kim, J. H. Seo, D. K. Oh, and J. K. Lee. 2007. Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q(10) production by Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol. 74: 974-980. https://doi.org/10.1007/s00253-006-0744-4
  9. Ha, S. J., S. Y. Kim, J. H. Seo, W. I. Sim, H. J. Moon, and J. K. Lee. 2008. Lactate increases coenzyme Q(10) production by Agrobacterium tumefaciens. World J. Microbiol. Biotechnol. 24: 887-890. https://doi.org/10.1007/s11274-007-9547-8
  10. Jiang, S. Y., L. J. Yu, X. Xiong, X. L. Shen, and Y. Jian. 2008. Optimal supply of precursors for $CoQ_{10}$ production by Rhodopseudomonas palustris. Prog. Modern Biomed. 8: 845- 850.
  11. Jeya, M., H. J. Moon, I. W. Lee, and J. K. Lee. 2010. Current state of coenzyme Q(10) production and its applications. Appl. Microbiol. Biotechnol. 85: 1653-1663. https://doi.org/10.1007/s00253-009-2380-2
  12. Katagiri, T. 1996. Appraisal of coenzyme $Q_{10}$ as a drug for the management of cardiac failure. Kiso To Rinshyo 30: 1559-1567.
  13. Ken, S., W. Masanori, S. Yoshito, I. Akihiro, and N. Napavarn. 2005. Applications of photosynthetic bacteria for medical fields. J. Biosci. Bioeng. 100: 481-488. https://doi.org/10.1263/jbb.100.481
  14. Kim, S. J., M. D. Kim, J. H. Choi, S. Y. Kim, Y. W. Ryu, and J. H. Seo. 2006. Amplification of 1-deoxy-D-xyluose 5-phosphate (DXP) synthase level increases coenzyme production in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 72: 982-985. https://doi.org/10.1007/s00253-006-0359-9
  15. Lipshutz, B. H., P. Mollard, S. S. Pfeiffer, and W. Chrisman. 2002. A short, highly efficient synthesis of coenzyme $Q_{10}$. J. Am. Chem. Soc. 124: 14282-14283. https://doi.org/10.1021/ja021015v
  16. Machado, P. A., H. Fu, R. J. Kratochvil, Y. H. Yuan, T. S. Hahm, C. M. Sabliov, C. I. Wei, and Y. M. Lo. 2010. Recovery of solanesol from tobacco as a value-added byproduct for alternative applications. Bioresour. Technol. 101: 1091-1096. https://doi.org/10.1016/j.biortech.2009.09.009
  17. Negishi, E., S. Y. Lou, C. Xu, and S. Huo. 2002. A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme $Q_{10}$. Org. Lett. 4: 261-264. https://doi.org/10.1021/ol010263d
  18. Okada, K., T. Kainou, K. Tanaka, T. Nakagawa, H. Matsuda, and M. Kawamukai. 1998. Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans. Eur. J. Biochem. 255: 52-59. https://doi.org/10.1046/j.1432-1327.1998.2550052.x
  19. Park, Y. C., S. J. Kim, J. H. Choi, W. H. Lee, K. M. Park, K. Mokoto, Y. W. Ryu, and J. H. Seo. 2005. Batch and fed-batch production of coenzyme $Q_{10}$ in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Appl. Microbiol. Biotechnol. 67: 192-196. https://doi.org/10.1007/s00253-004-1743-y
  20. Piotrowska-Cyplik, A., A. P. Olejnik, J. D. Cyplik, and Z. Czarnecki. 2009. The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresour. Technol. 100: 5037-5044. https://doi.org/10.1016/j.biortech.2009.05.053
  21. Sakato, K., H. Tanaka, S. Shibata, and Y. Kuratsu. 1992. Agitation aeration studies on coenzyme-Q10 production using Rhodopseudomonas sphaeroides. Biotechnol. Appl. Biochem. 16: 19-28.
  22. Seo, M. J., E. M. Im, J. Y. Nam, and S. O. Kim. 2007. Increase of CoQ10 production level by the coexpression of decaprenyl diphosphate synthase and 1-deoxy-D-xylulose 5-phosphate synthase isolated from Rhizobium radiobacter ATCC 4718 in recombinant Escherichia coli. J. Microbiol. Biotechnol. 17: 1045-1048.
  23. Seo, M. J., E. M. Im, J. H. Hur, J. Y. Nam, C. G. Hyun, Y. R. Pyun, and S. O. Kim. 2006. Production of coenzyme Q10 by recombinant E. coli harboring the decaprenyl diphosphate synthase gene from Sinorhizobium meliloti, J. Microbiol. Biotechnol. 16: 933-938
  24. Seo, M. J. and S. O. Kim. 2010. Effect of limited oxygen supply on coenzyme Q10 production and its relation to limited electron transfer and oxidative stress in Rhizobium radiobacter T6102. J. Microbiol. Biotechnol. 20: 346-349
  25. Tanaka, A., S. Shimizu, and S. Fukui. 1972. Fermentative production of ubiquinones from alknes. Patent JP 7220396.
  26. Tian, Y. T., T. L. Yue, Y. H. Yuan, P. K. Soma, P. D. Williams, P. A. Machado, et al. 2010. Tobacco biomass hydrolysate enhances coenzyme $Q_{10}$ production using photosynthetic Rhodospirillum rubrum. Bioresour. Technol. 101: 7877-7881. https://doi.org/10.1016/j.biortech.2010.05.020
  27. Wang, Z. F., Y. L. Huang, J. F. Rathman, and S. T. Yang. 2002. Lecithin-enhanced biotransformation of cholesterol to androsta- 1,4-diene-3,17-dione and androsta-4-ene-3,17-dione. J. Chem. Technol. Biotechnol. 77: 1349-1357. https://doi.org/10.1002/jctb.728
  28. Yajima, K., T. Kato, A. Kanda, S. Kitamura, and Y. Ueda. 2003. Process for producing coenzyme$Q_{10}$Patent WO 2003 056024.
  29. Zahiri, H. S., S. H. Yoon, J. D. Keasling, S. H. Lee, K. S. Won, S. C. Yoon, and Y. C. Shin. 2006. Coenzyme$Q_{10}$ production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab. Eng. 8: 406-416. https://doi.org/10.1016/j.ymben.2006.05.002
  30. Zhang, D. W., Z. Li, F. H. Wang, B. Shrestha, P. F. Tian, and T. W. Tan. 2007. Expression of various genes to enhance ubiquinone metabolic pathway in Agrobacterium tumefaciens. Enzyme Microb. Technol. 41: 772-779. https://doi.org/10.1016/j.enzmictec.2007.06.014
  31. Zhang, D. W., B. Shrestha, Z. P. Li, and T. W. Tan. 2007. Ubiquinone-10 production using Agrobacterium tumefaciens dps gene in Escherichia coli by coexpression system. Mol. Biotechnol. 35: 1-14. https://doi.org/10.1385/MB:35:1:1
  32. Zhong, W. H., J. J. Fang, H. G. Liu, and X. Wang. 2009. Enhanced production of $CoQ_{10}$ by newly isolated Sphingomonas sp. ZUTE03 with a coupled fermentation-extraction process. J. Ind. Microbiol. Biotechnol. 36: 687-693. https://doi.org/10.1007/s10295-009-0538-7
  33. Zhong, W. H., C. J. Zhu, M. Shu, K. D. Sun, L. Zhao, C. Wang, Z. J. Ye, and J. M. Chen. 2010. Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresour. Technol. 101: 6935-6941. https://doi.org/10.1016/j.biortech.2010.03.142
  34. Zhong, W. H., W. J. Wang, Z. Y. Kong, B. Wu, L. Zhong, X. Z. Li, J. Yu, and F. M. Zhang. 2011. Coenzyme Q10 production directly from precursors by free and gel entrapped Sphingomonas sp. ZUTE03 in a water-organic solvent, two-phase conversion system. Appl. Microbiol. Biotechnol. 89: 293-302. https://doi.org/10.1007/s00253-010-2876-9

Cited by

  1. Coenzyme Q10 production by immobilized Sphingomonas sp. ZUTE03 via a conversion–extraction coupled process in a three-phase fluidized bed reactor vol.50, pp.2, 2011, https://doi.org/10.1016/j.enzmictec.2011.11.006
  2. Cellular factories for coenzyme Q 10 production vol.16, pp.None, 2017, https://doi.org/10.1186/s12934-017-0646-4
  3. Production of coenzyme Q10 by purple non-sulfur bacteria: Current development and future prospect vol.307, pp.None, 2011, https://doi.org/10.1016/j.jclepro.2021.127326