DOI QR코드

DOI QR Code

Molecular Cloning of Maltooligosyltrehalose Trehalohydrolase Gene from Nostoc flagelliforme and Trehalose-Related Response to Stresses

  • Wu, Shuangxiu (Department of Biology, College of Life and Environmental Science, Shanghai Normal University) ;
  • He, Liang (Department of Biology, College of Life and Environmental Science, Shanghai Normal University) ;
  • Shen, Rongrong (Department of Biology, College of Life and Environmental Science, Shanghai Normal University) ;
  • Zhang, Xiu (Department of Biology, College of Life and Environmental Science, Shanghai Normal University) ;
  • Wang, Quanxi (Department of Biology, College of Life and Environmental Science, Shanghai Normal University)
  • Received : 2011.01.13
  • Accepted : 2011.05.25
  • Published : 2011.08.28

Abstract

A genomic DNA fragment encoding a putative maltooligosyltrehalose trehalohydrolase (NfMTH) for trehalose biosynthesis was cloned by the degenerate primer- PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTH is 1,848 bp in length and encodes 615 amino acid residues, constituting a 70 kDa protein. The deduced amino acid sequence of NfMTH contains 4 regions highly conserved for MTHs. By expression of NfMTH in E. coli, the function of this protein was demonstrated, where the recombinant protein catalyzed the hydrolysis of maltooligosyl trehalose to trehalose. The expressions of MTH and maltooligosyltrehalose synthase in the filaments of N. flagelliforme were upregulated significantly under dehydration stress, NaCl stress, and high temperature-drought stress. The accumulations of both trehalose and sucrose in the filaments of N. flagelliforme were also improved significantly under the above stresses. Furthermore, trehalose accumulated in smaller quantities than sucrose did when under NaCl stress, but accumulated in higher quantities than sucrose did when under temperature-drought stress, indicating that both trehalose and sucrose were involved in N. flagelliforme adapted to stresses and different strategies conducted in response to various stress conditions.

Keywords

References

  1. Allewalt, J. P., M. M. Bateson, N. P. Revsbech, K. Slack, and D. M. Ward. 2006. Effect of temperature and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the octopus spring microbial mat community of Yellowstone National Park. Appl. Environ. Microbiol. 72: 544-550. https://doi.org/10.1128/AEM.72.1.544-550.2006
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Crowe, J. H., J. F. Carpenter, and L. M. Crowe. 1998. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60: 73-103. https://doi.org/10.1146/annurev.physiol.60.1.73
  4. Crowe, J. H., L. M. Crowe, and D. Chapman. 1984. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 223: 701-703. https://doi.org/10.1126/science.223.4637.701
  5. Dodds, W. K., D. A. Gudder, and D. Mollenhauer. 1995. The ecology of Nostoc. J. Phycol. 31: 2-18. https://doi.org/10.1111/j.0022-3646.1995.00002.x
  6. Elbein, A. D., Y. T. Pan, I. Pastuszak, and D. Carroll. 2003. New insights on trehalose: A multifunctional molecule. Glycobiology 13: 17R-27R. https://doi.org/10.1093/glycob/cwg047
  7. Fang, T. Y., W. C. Tseng, T. Y. Shin, and M. Y. Wang. 2008. Identification of the essential catalytic residues and selectivityrelated residues of maltooligosyltrehalose trehalohydrolase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. J. Agric. Food Chem. 56: 5628-5633. https://doi.org/10.1021/jf073320b
  8. Gao, K. 1998. Chinese studies on the edible blue-green alga, Nostoc flagelliforme: Review. J. Appl. Phycol. 10: 37-49. https://doi.org/10.1023/A:1008014424247
  9. Gao, K. and D. Zou. 2001. Photosynthetic bicarbonate utilization by a terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae). J. Phycol. 37: 768-771. https://doi.org/10.1046/j.1529-8817.2001.01039.x
  10. Higo, A., H. Katoh, K. Ohmori, M. Ikeuchi, and M. Ohmori. 2006. The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152: 979-987. https://doi.org/10.1099/mic.0.28583-0
  11. Hill, D. R., A. Peat, and M. Potts. 1994. Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (cyanobacteria). Protoplasma 182: 126-148. https://doi.org/10.1007/BF01403474
  12. Kobayashi, K., M. Kato, Y. Miura, M. Kettoku, T. Komeda, and A. Iwamasu. 1996. Gene cloning and expression of new trehaloseproducing enzymes from hyperthermophilic archaeum Sulfolobus solfataricus KM1. Biosci. Biotech. Biochem. 60: 1882-1885. https://doi.org/10.1271/bbb.60.1882
  13. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
  14. MacGregor, E. A., S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1-20. https://doi.org/10.1016/S0167-4838(00)00302-2
  15. Mukai, K., A. Tabuchi, T. Nakada, T. Shibuya, H. Chaen, S. Fukuda, M. Kurimoto, and Y. Tsujisaka. 1997. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch Staerke 49: 26-30. https://doi.org/10.1002/star.19970490107
  16. Nakada, T., K. Maruta, K. Tsusaki, M. Kubota, H. Chaen, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1995. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci. Biotech. Biochem. 59: 2210-2214. https://doi.org/10.1271/bbb.59.2210
  17. Pang, W. T., S. X. Wu, J. Yu, and Q. X. Wang. 2007. Determination of trehalose and sucrose contents in Nostoc flagelliforme. J. Shanghai Normal University (Natural Sciences Edition). 36: 73-76.
  18. Pramanik, M. H. R. and R. Imai. 2005. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol. Biol. 58: 751-762. https://doi.org/10.1007/s11103-005-7404-4
  19. Reed, R. H., D. L. Richardson, S. R. C. Warr, and W. D. P. Stewart. 1984. Carbohydrate accumulation and osmotic stress in cyanobacteria. J. Gen. Microbiol. 130: 1-4.
  20. Schiraldi, C., I. Di. Lernia, and M. De. Rosa. 2002. Trehalose production: Exploiting novel approaches. Trends Biotechnol. 20: 420-425. https://doi.org/10.1016/S0167-7799(02)02041-3
  21. Seo, J.-S., J. H. An, M.-Y. Baik, C. S. Park, J.-J. Cheong, T. W. Moon, K. H. Park, Y. D. Choi, and C. H. Kim. 2007. Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis. J. Microbiol. Biotechnol. 17: 123-129.
  22. Tamaru, Y., Y. Takani, T. Yoshida, and T. Sakamoto. 2005. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71: 7327-7333. https://doi.org/10.1128/AEM.71.11.7327-7333.2005
  23. Wu, S. X., R. R. Shen, X. Zhang, and Q. X. Wang. 2010. Molecular cloning and characterization of maltooligosyltrehalose synthase gene from Nostoc flagelliforme. J. Microbiol. Biotechnol. 20: 579-586.
  24. Yoshida, T. and T. Sakamoto. 2009. Water-stress induced trehalose accumulation and control of trehalase in the cyanobacterium Nostoc punctiforme IAM M-15. J. Gen. Appl. Microbiol. 55: 135-145. https://doi.org/10.2323/jgam.55.135

Cited by

  1. Proteomic Analysis and qRT-PCR Verification of Temperature Response to Arthrospira ( Spirulina ) platensis vol.8, pp.12, 2011, https://doi.org/10.1371/journal.pone.0083485
  2. Heterologous expression of three stress-responsive genes from Nostoc flagelliforme confers tolerance to abiotic stresses in Escherichia coli vol.26, pp.1, 2011, https://doi.org/10.1007/s10811-013-0064-x
  3. Biochemical characteristics of a novel protease from the basidiomyceteAmanita virgineoides : A Novel Protease fromAmanita virgineoides vol.64, pp.4, 2011, https://doi.org/10.1002/bab.1519
  4. Comparative transcriptome analysis reveals that photosynthesis contributes to drought tolerance of Nostoc flagelliforme (Nostocales, Cyanobacteria) vol.57, pp.1, 2011, https://doi.org/10.2216/17-18.1
  5. The drnf1 Gene from the Drought-Adapted Cyanobacterium Nostoc flagelliforme Improved Salt Tolerance in Transgenic Synechocystis and Arabidopsis Plant vol.9, pp.9, 2011, https://doi.org/10.3390/genes9090441
  6. Engineering cyanobacteria as cell factories for direct trehalose production from CO2 vol.62, pp.None, 2011, https://doi.org/10.1016/j.ymben.2020.08.014